
www.manaraa.com

University of South Carolina University of South Carolina 

Scholar Commons Scholar Commons 

Theses and Dissertations 

Spring 2021 

Discovery and Investigation of Ammonia Decomposition Discovery and Investigation of Ammonia Decomposition 

Catalysts Catalysts 

Katherine McCullough 

Follow this and additional works at: https://scholarcommons.sc.edu/etd 

 Part of the Chemical Engineering Commons 

Recommended Citation Recommended Citation 
McCullough, K.(2021). Discovery and Investigation of Ammonia Decomposition Catalysts. (Doctoral 
dissertation). Retrieved from https://scholarcommons.sc.edu/etd/6345 

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in 
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please 
contact dillarda@mailbox.sc.edu. 

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F6345&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/240?utm_source=scholarcommons.sc.edu%2Fetd%2F6345&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/6345?utm_source=scholarcommons.sc.edu%2Fetd%2F6345&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dillarda@mailbox.sc.edu


www.manaraa.com

 
 

 

Discovery and Investigation of Ammonia Decomposition Catalysts 
 

by 

 

Katherine McCullough 

 

Bachelor of Science 

University of South Carolina, 2016 

 

 

Submitted in Partial Fulfillment of the Requirements 

For the Degree of Doctor of Philosophy in 

Chemical Engineering 

College of Engineering and Computing 

University of South Carolina 

2021 

Accepted by: 

Jochen Lauterbach, Major Professor 

Andreas Heyden, Committee Member 

John Regalbuto, Committee Member 

Hans-Conrad zur Loye, Committee Member 

Melissa Moss, Committee Member 

Tracey L. Weldon, Interim Vice Provost and Dean of the Graduate School 



www.manaraa.com

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by Katherine McCullough, 2021 

All Rights Reserved.  

 



www.manaraa.com

iii 

ABSTRACT 

 

Liquid ammonia can be used as a hydrogen transportation and generation source for use in 

PEM fuel cells. Current Ru catalysts for ammonia decomposition contain high loadings of 

Ru and require reaction temperatures at or above 550°C to attain equilibrium conversion. 

For on-site hydrogen generation, it is of interest to combine hydrogen generation from 

ammonia decomposition directly with PEM fuel cells. For this occur, operating 

temperatures need to be considerably lowered and effluent concentrations of ammonia need 

to be minimized to avoid poisoning of the membrane. Therefore, it is of interest to develop 

a low-cost catalyst that exhibits high activity at temperatures at or below 450°C. 

Prior work from our group discovered the use of supported hollandite (KRu4O8) exhibited 

excellent low temperature ammonia decomposition activity. This work further investigates 

under what conditions and synthesis parameters the hollandite structure can form, and 

further delves into the working state of the catalyst before exposure to ammonia. Here we 

show that the hollandite is a sacrificial structure that forms metallic Ru in various particle 

sizes depending on the H2 reduction temperature through in-situ XRD analysis. 

Additionally, we compare these mixed metal Ru oxide catalysts with K promoted Ru 

catalysts synthesized via strong electrostatic adsorption (SEA). Next, we report the 

synthesis and high throughput catalytic screening of K promoted Ru based catalysts that 

have one of 31 additional metals incorporated, at three different Ru and secondary metal 

weight loadings.
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Next, we report the synthesis and high throughput catalytic screening of K promoted Ru 

based catalysts that have one of 31 additional metals incorporated, at three different Ru and 

secondary metal weight loadings. The Ru weight loading varied from 3 wt% to 1 wt%. In 

total, over 100 catalysts (including duplicates) were synthesized via incipient wetness 

impregnation method and screened for ammonia decomposition activity using a 16-channel 

parallel plug flow reactor. Fourier transform infrared (FTIR) imaging was used to analyze 

all 16 effluent streams in parallel in under two minutes. At 300°C, catalysts containing Mg, 

Ca, Sr, Sc, Y, Zr, Hf, Ta, Rh and Ir with 3wt% Ru were found to have excellent ammonia 

decomposition activity compared a K promoted 4wt% Ru catalyst that was previously 

optimized by our group. Catalysts containing 1 wt% Ru and 3 wt% Sc, Y, Zr or Hf were 

found to outperform the K promoted 4wt% Ru catalyst at the same reaction conditions. 

Many of these catalyst combinations reported here have not been reported for ammonia 

decomposition previously. Further insight into Sr and Fe containing catalysts were further 

investigated for their turnover frequency (TOF), apparent activation energy, H2 uptake, and 

through CO adsorption to understand mechanistically the difference between the two 

different kinds of catalysts.  

Additional insight into the working of the catalysts were investigated through XRD phase 

identification and profile fitting to determine how the different Ru species present, 

crystallite size and secondary metal influenced the ammonia decomposition activity. A 

machine learning algorithm was developed to extract the activity descriptors and elemental 

characteristics that are responsible for ammonia decomposition activity at different 

operating temperatures. We demonstrate the application of a random forest machine 

learning algorithm to high-throughput experimental data to increase understanding of 
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catalyst behaviour through knowledge extraction and to guide catalyst discovery through 

predictions. The knowledge extracted from this material agnostic machine learning 

algorithm can be used to design a second iteration of catalysts, where features that 

contributed to the greatest change in activity were accentuated. Additionally, this 

information can be further applied to the design of ammonia synthesis catalysts at ambient 

pressures.
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CHAPTER 1 

INTRODUCTION 

 1.1 Hydrogen Energy and Storage 

The rising concern of greenhouse gas emissions generated from non-renewable 

energy sources has promoted a wealth of research on sustainable, carbon free energy. 

Carbon dioxide emissions from natural gas, coal and oil are considered to be the largest 

threat to the environment, and yet world consumption of these energy sources continue to 

increase yearly (1). To date, oil consumption around the world has increased by 10% and 

natural gas consumption by 16% since 2010 (1, 2). Continued research efforts to make 

clean energy technologies more efficient, abundant, and cost effective has resulted in a 

steady increase in the use of renewable energies. Primarily, renewable and sustainable 

energy sources include nuclear (3, 4), solar, hydro and wind (5–8) and hydrogen energy 

(9–12). Ultimately, the challenges facing sustainable energy comes down to reliability, and 

an efficient means of storage and conversion for these energy technologies. Of these 

sustainable energy sources, hydrogen energy has gained traction and increased funding 

over the past decades since the proposal of the “hydrogen economy” during the oil crisis 

in 1972 (13–15). This term refers to the integration of hydrogen as one of the main 

components in energy systems, primarily for heating and hydrogen vehicles, as well as 
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long term storage and transportation options (16). Globally, hydrogen has the capability to 

provide 3% of energy consumption by 2050 and has a significantly higher energy density  

than other conventional fuel sources (10, 17). 

Advances in proton exchange membrane fuel cells (PEMFCs) have also accelerated 

research efforts in hydrogen energy (18, 19). PEMFCs exhibit high power densities, quiet 

operation, generate zero pollution and have higher efficiencies compared to combustion 

energies that are limited by the Carnot factor (20). Hydrogen is abundant, produces 

environmentally benign by  products upon combustion, and consists of a very high energy 

density between 120 MJ/kg and 144 MJ/kg (16, 21).  The major barrier in utilizing 

hydrogen energy is the lack of efficient means in which to store and transport it. Gaseous 

hydrogen requires excess pressures (>300 bar) for storage which, in and of itself is an 

energy intensive process requiring 1.36 kWh/kg H2 to compress isothermally from to  20 

to 350 bar (22). Liquefied hydrogen can reduce volume constraints but requires cryogenic 

cooling to -253°C (16, 22, 23). These technologies have been applied to some prototype 

vehicles, but ultimately these methods of storage do not meet the required gravimetric 

energy densities set by the US Department of Energy (DOE) (9, 24, 25). Thus, researchers 

have focused on developing hydrogen storage methods and materials to meet the 1.5 

kWh/kg H2 gravimetric capacity for onboard hydrogen storage set by the US DOE for 2020 

(24). Of course, hydrogen fueling stations and also be proposed in lieu of hydrogen 

powered vehicles (11, 25). Additionally, hydrogen is a primary candidate in the zero-

energy concept, which has been introduced in energy policy and investigates the concept 

of buildings generated as much renewable energy as they consume (17). Therefore, it 

obvious that there are many advantages and interest in integrating hydrogen into existing 
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energy infrastructure and as an alternative, carbon free energy source, but efficient storage 

and conversion solutions must be addressed. 

Solid hydrogen storage materials generally consists of metal organic frameworks 

(MOFs), metal hydrides or borohydrides that can physically or chemical store hydrogen 

(16, 26–28). Currently these systems fail to have appreciable hydrogen sorption properties, 

slow kinetics, or require harsh operating temperatures. Hydrogen stored in methane, natural 

gas or methanol are obvious efficient methods for hydrogen storage and transportation. In 

fact, the majority of hydrogen production currently comes from the steam reforming of 

methane (21, 29, 30). Ammonia for hydrogen storage is a promising, carbon free alternative 

that satisfies the DOE targets for physical storage of hydrogen (23). Ammonia can be 

readily decomposed at atmospheric pressure to form molecular hydrogen and nitrogen, and 

current infrastructure for transportation already exists. Ammonia has a high hydrogen 

content, a comparative energy density to some fossil fuels (3.5 kWh/kg compared to 5.6 

for methanol, and 7.2 for ethanol) and is easily liquefied (31, 32). In fact, ammonia as a 

direct fuel source has been studied in both laboratories and pilot plants either through 

ammonia fuel cells or combustion, and ultimately may be a more attractive and 

economically feasible fuel source than hydrogen (33–39). Most importantly, the cost of 

anhydrous ammonia is lower than that of pure hydrogen, making this an economically 

feasible process (40, 41). Ammonia could be disregarded as a potential hydrogen carrier 

because of its toxicity, but recent studies have found that reversible ammonia storage in 

the form of metal ammine salts can dramatically reduce the hazards and smells associated 

with handling ammonia, while preserving the high hydrogen storage capacity (28, 42). 

Additionally, the Advanced Research Project Agency-Energy (ARPA-E) has launched its 
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“Renewable Energy to Fuels through Utilization of Energy-Dense Liquids” REFUEL 

program aimed to develop scale up energy generation processes from carbon neutral fuel 

sources to make electricity of hydrogen (43). These projects include ammonia cracking 

membrane reactors, electrochemical membrane reactors for ammonia, H2 generation from 

catalytic ammonia cracking, direct ammonia fuel cells and wind energy to ammonia 

synthesis to name a few. Ultimately, these points indicate that ammonia is an excellent 

candidate for hydrogen storage and transportation. 

While decomposing ammonia to generate hydrogen is a carbon neutral process, 

ammonia is primarily produced from the steam reforming of methane and coal gasification 

(29, 30, 38). Ammonia alone is responsible for 1% of the world’s CO2 emissions and 1.8% 

of the world’s consumption of fossil fuels (38, 44, 45). This is not surprising since it is the 

second largest production process in the world (46). Even without facilitating ammonia for 

hydrogen transport, there is a need to decarbonize ammonia synthesis and ultimately 

hydrogen production. Very recently, a massive number of projects have been announced 

for carbon free ammonia production. For example, Saudi Aramco and the Institute of 

Energy Economics announced its first shipment of “blue” ammonia, a process which 

generates hydrogen from natural gas and then captures the CO2 emissions to be used further 

for methanol synthesis and enhanced oil recovery (47, 48). Air Products has also recently 

signed an agreement to begin building a 4 GW ammonia production facility powered by 

renewable energy in 2025 (49). They propose to produce 650 tons per day of hydrogen 

through water electrolysis. Monolith Materials will produce carbon free ammonia by their 

proprietary technology that converts natural gas into hydrogen and carbon black, instead 

of CO2 (50). This demonstrates that there will be a market and supply for “green” ammonia 
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and hydrogen production in the near future. Yara also announced plans to continue to build 

upon their existing fleet of solar powered ammonia production plants from water 

electrolysis (36, 39). The decarbonization and green production of ammonia and hydrogen 

is a promising step forward towards reducing our impact on the environment, but the long-

term implications of water as a source of fuel should be further debated considering the 

growing demand and scarcity of fresh water sources (51–53). Currently, ammonia as a 

hydrogen storage and transportation molecule is seeing significant growth in research and 

industry sectors. While these points indicate that ammonia is a good candidate for the 

storage of hydrogen, the conversion of ammonia to hydrogen is yet to be addressed. 

1.2 Catalytic Ammonia Decomposition 

Hydrogen liberation from ammonia occurs through a thermal catalytic cracking 

process occurring at atmospheric pressure and requiring temperatures upwards of 550°C 

for complete conversion (23, 32, 54). The efficiency and cost at which current catalysts can 

decompose ammonia is the main drawback for utilizing ammonia for hydrogen storage. 

Additionally, the feasibility of ammonia for hydrogen storage depends upon realistic 

alignment between the temperature of decomposition with that of the PEMFC (~200°C) 

(55) so that the two technologies can be integrated. Using thermodynamic equilibrium data, 

we calculated the equilibrium conversion of ammonia at 1 bar, as shown in Figure 1.1. At 

200°C, the equilibrium conversion for ammonia is roughly 89%, which is not adequate 

conversion for the low ammonia tolerance of PEMFCs (0.1 ppm) (20, 56). This can be 

mitigated by using commercially available adsorbents, high-temperature PEMFC, alkaline 

fuel cells, or implementing membrane reactors during ammonia decomposition (20, 57, 

58). Metals for ammonia decomposition typically include Fe, Co, Ni and Ru, which will  
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be elaborated on in later sections. Currently, the most effective catalysts consist of Ru 

nanoparticles supported on carbon nanotubes (CNT) (59–63). Of these, the commonly cited 

“state of the art” catalyst achieves less than 10% conversion at 200°C, and reaches 60% 

conversion of ammonia at roughly 400°C, using 7% Ru/CNT promoted with 4% Cs (63). 

While the Ru loading was considerably high and the inlet ammonia concentration was not 

reported, these results were some of the first to demonstrate that high ammonia conversions 

can be achieved at more mild temperatures. Typically, Ru based catalysts require upwards 

of 550°C to obtain high activity. Thermodynamically, 98% conversion can be achieved at 

350°C, and 99.1% at 400°C, at which the reaction is essentially irreversible. Below 400°C, 

the conversion becomes more dependent on the kinetics of the reaction on the catalyst 

Figure 1.1. Equilibrium conversion of ammonia at atmospheric pressure 
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surface.  The scarcity and cost of using high loadings of Ru also limits the economic 

feasibility of the decomposition reaction. A compilation of some of the ammonia 

decomposition literature shown in Figure 1.2 from 2001 to 2018, highlighting the active 

metal used in different studies for this reaction. Interestingly, this demonstrates that 

research efforts that are geared towards finding or utilizing alternative catalysts to Ru are 

extremely scarce.  Instead, most studies focus on the optimization of existing Ru based 

catalysts through manipulation of Ru particle size, support and promoters. Therefore, it is 

pertinent to focus research efforts on cost reduction of the active metal component while 

simultaneously enhancing the reactivity at lower operating temperatures. 

Thermodynamically, this could be achieved at very mild temperatures, however 

diminishing the gap that exists between the thermodynamic and kinetic limitations will 

require more complex and broader research strategies than which currently exist.   

1.2.1 A Brief History on Ammonia 

Ammonia decomposition has been studied since the early 19th century as a 

convenient test reaction, and to better understand the ammonia synthesis reaction, which 

had had very little success up until this point (46, 64, 65). After the formulation of the van’t 

Hoff equations for thermodynamic equilibrium, Fritz Haber discovered that a combination 

of high pressure and low temperatures were necessary for appreciable ammonia synthesis 

rates (65). Carl Bosch was then able to successfully scale up this reaction and discovered 

the technology for high pressure flow reactors. In the 1950’s, Alwin Mittasch underwent 

one of the most comprehensive screening of over 2,500 different catalyst combinations to 

discover that fused Fe promoted with Al2O3, CaO and K was highly active for ammonia 

synthesis (65–67). Ammonia synthesis had a monumental impact on how we study, 
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investigate and go about catalytic materials and reactions. Industrially, the current 

ammonia synthesis catalyst is still relatively unchanged from the composition discovered 

by Mittasch. Regardless of these advances, mechanistic understanding was still very 

unclear due to the complexity of the reduction of Fe under reaction conditions, the surface 

coverage of K species that would change the electronic environment of the multiple 

different Fe crystal planes present (68). With the onset of ultrahigh vacuum (UHV) 

technologies, it became possible to simplify the complexity of catalysts by studying how 

the reaction proceeds over different crystal orientations.  

The ammonia synthesis reaction has basically formulated all general concepts 

related to heterogeneous catalysis because of its apparent simplicity and the range of 

Figure 1.1. A compilation of some of the ammonia decomposition literature from 2001 – 

2018 highlighting the active metal studied during the catalytic reaction. 
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conditions and equilibrium situations in which it can be studied (64). The reaction is also 

well suited for surface science studies to determine how different atomic surface structures 

and composition influence activity (69). These efforts were led by Ertl and Somorjai to 

improve understanding of ammonia synthesis (70). For example, Somorjai et al. 

demonstrated how promoting three different basal planes of Fe with K could enhance the 

sticking coefficients of nitrogen. The rates of ammonia formation varied significantly over 

the different basal plans and with the addition of K (71). Additionally, the elementary 

reactions for ammonia synthesis could be studied on single crystal surfaces, which can 

provide the basis for microkinetic models to furth describe the behavior of a catalyst under 

more technical operating conditions.  

1.2.2 Kinetics and Reactivity of Ammonia Decomposition 

It was originally thought that the best catalyst for ammonia decomposition would 

also be the best catalyst for ammonia synthesis due to the principle of microscopic 

reversibility. Curiously, it is now widely accepted and demonstrated within one body of 

work this is not the case, due to differences in operating conditions and rate determining 

steps (adsorption vs. desorption of molecular nitrogen) (72). The original paper compares 

ammonia synthesis and decomposition rates as a function of dissociative nitrogen 

adsorption energy and makes the claim that the optimal ammonia decomposition catalyst 

will not be the optimal ammonia synthesis reaction based on this scaling relation. However, 

both reaction are enhanced by basic promoters and alkali and alkaline earth metal oxides 

and some examples of further catalyst systems used for both reactions can be found (73–

76). The kinetics of ammonia decomposition have been shown to vary based on the 

temperature, concentration and active metal component (77, 78). The most active metal for 
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ammonia decomposition and ammonia synthesis is Ru, and therefore the kinetics and 

reactivity addressed here will be mainly focused on Ru based catalysts and surfaces. The 

Sabatier principle explains the reason between the high reactivity of Ru, for it can easily 

form stable intermediates, but not so stable as to retard the rate of reaction (70, 79, 80).  

Ammonia decomposition occurs through sequential dehydrogenation steps, 

followed by the recombination and desorption of molecular N2 and H2 from the catalyst 

surface. The elementary steps for this reaction are as follows and are the reverse of the 

ammonia synthesis reaction: 

NH3 ↔NH3,ads (1.1) 

NH3,ads→NH2,ads+Hads  (1.2) 

NH2,ads+Hads→NHads+2Hads  (1.3) 

NHads+2Hads →Nads+3Hads  (1.4) 

2Hads →H2 (1.5) 

2Nads →N2 (1.6) 

Kinetic studies over Ru (0001) crystals have determined that the RDS is either the 

associative desorption of nitrogen atoms (eq. 1.6) or N-H bond cleavage (eq. 1.2-1.4) to be 

rate limiting (81, 82) but no consensus on the rate determining step (RDS) or the most 

abundant reaction intermediate (MARI) have been established within the literature. Egawa 

et al., studied ammonia decomposition over Ru (0001) and stepped Ru (1110) single 

crystals and determined that the RDS may be a function of temperature, where below 650K, 

nitrogen desorption is rate limiting, and above 750K, N-H cleavage becomes rate limiting 

(83). They found that the rate of reaction increased up to ca. 560K, and then decreased at 

higher temperatures. At low temperatures when nitrogen desorption is rate limiting, they 
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found that the kinetics were dependent on the ammonia and hydrogen partial pressures, 

and that the rate of nitrogen formation was one order of magnitude faster on stepped Ru 

(1110) than Ru (0001) crystal. Higher hydrogen partial pressures decrease the 

concentration of surface nitrogen and therefore inhibits the rate of reaction. This has been 

determined over various Ru catalysts by fitting rates of reaction to simple power law 

models (84, 85). At higher temperatures, the reaction was found to be independent of 

hydrogen and nitrogen pressures and the amount of adsorbed hydrogen on the surface was 

found to be negligible (83). The activation energy for N2 desorption on Ru (0001) has been 

determined to be 184-190  kJ/mol (81, 86). However, differences in the RDS may appear 

under different reaction conditions (UHV conditions vs high pressures). Hinrichsen et al. 

(87) used microkinetic modeling to bridge the gap between UHV studies and high pressure 

studies, by probing the interaction of N2 with Ru supported on Al2O3, MgO and Cs-

Ru/MgO through N2-TPD and isotopic exchange reactions. They determined that the 

desorption of N2 from Ru/MgO resulted in new low temperature desorption peaks, which 

were not present in Ru/Al2O3. The Ru/MgO N2 desorption event was attributed to 

electronic enhancement of the active site through oxygen vacancies that are exist at the 

interface between Ru crystallites and MgO. These sites were also present in Cs-Ru/MgO, 

and the addition of Cs lowered the activation energy for N2 desorption from 158.0 to 137.0 

kJ/mol.   

Differences in RDS may be due to the support used as well as the dispersion and 

particle size and shape of the Ru particles. In fact, the dissociative adsorption of N2 on Ru 

(0001) crystal has been shown to almost exclusively occur over Ru step sites (88). By 

preferentially blocking step sites on a Ru (0001) crystal through Au deposition, Dahl et al., 
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showed that the N2 sticking coefficient decreased by seven orders of magnitude. 

Additionally, N2 desorption on Ru (0001) was strongly affected as exhibited by N2-TPD, 

where the desorption of N2 was shifted up roughly 150K with small amounts of Au. Egawa 

et al., found that the H2 rate of formation was one order of magnitude higher on the stepped 

Ru (1110) single crystal (83). This demonstrates the structure sensitivity of the NH3 

decomposition reaction and may explain the differences in different RDS determined in 

various studies over Ru catalysts.  

Therefore, it is clear that the rate of the reaction and kinetics of ammonia 

decomposition are heavily influenced by the support, promoter and operating conditions 

employed. In fact, experimental determination of the RDS using Al2O3 supported metal 

catalysts have shown that the RDS may be a function of the active metal (78). Ganley et 

al. (78) attempted to correlate TOF over 13 different metals with common models used to 

predict catalytic reactivity such as the energy of the center of the d-band relative to the 

Fermi level and heat of formation of the metal oxide. They determined that both the relative 

N-H bond cleavage and associative desorption of nitrogen were needed to predict the 

reactivity of the different metals, which resulted in a volcano plot relationship, where N-H 

cleavage is the RDS over precious metals like Ru, Rh, Pd, and Pt and the nitrogen 

desorption is the RDS over Fe, Co and Ni (23, 78, 80). The determined the order of activity 

Ru > Ni > Rh > Co > Ir > Fe. In contrast to Ganley et al., TAP experiments studying surface 

species and product formation during NH3 decomposition over Ru/C catalysts determined 

that the RDS is associative desorption of N over Ru/C (89). Additionally, Yin et al. (90) 

determined the order of activity Ru > Rh > Ni > Pd = Pt > Fe.  
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Regardless of differences in the literature, theoretical calculations commonly utilize 

the N2 binding energy of various metal surfaces as a descriptor to predict NH3 

decomposition reactivity (80, 88). This method has identified various bimetallic catalysts 

such as Fe-Pt, Co-Pt, Cu-Pt (89, 90) and Co3Mo3N (80) as promising cost effective 

catalysts. However, such highly defined systems such as Fe-Pt (111) will be difficult to 

experimentally synthesize and stabilize at more technical operating conditions. Yet there 

has been some success with CoMo catalysts for NH3 decomposition (91), and most recently 

by using high entropy alloy catalysts composed of CoMoFeNiCu particles with various 

Co/Mo ratios (92). 

1.2.3 Active Metals  

While Ru is the most intrinsically active metal for ammonia decomposition, the 

cost associated with using Ru catalysts is a major drawback to the scaling of this process. 

In 2020, the cost of Ruthenium was 270 USD/oz, while that of Cobalt is only 0.21 USD/oz 

(93). This has motivated research for alternative catalysts based on metals that are more 

readily available and cost effective. These metals mainly consists of non-noble metals like 

Co, Fe, Ni as well as a variety of carbides and nitrides, based on their positioning in the 

volcano plot relationship describing ammonia decomposition rates of reaction with the N2 

binding energy (78–80). This body of work will discuss some of the results and variations 

in activity primarily in Fe, Ni and Co based catalysts.  

Fe based catalysts have been extensively studied for ammonia decomposition 

because of their successful use in the ammonia synthesis reaction. However, under 

ammonia decomposition operating conditions, the formation of Fe nitrides is more 
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prevalent, thus deactivating these catalysts at temperatures as low as 300°C (23, 88).  It has 

been demonstrated that encapsulating Fe nanoparticles in SiO2 to create core-shell 

nanoparticles  can show stability for up to 40 hours at 550°C and achieve a conversion of 

60% at this temperature (94, 95). Jedynak et al., showed that K promoted Fe catalysts 

supported on graphitized carbon with Fe nanoparticles resulted in higher turnover 

frequency (TOF) with decreasing Fe particle size, but that the apparent activation energy 

was significantly higher than that of K promoted Ru catalysts supported on carbon (166 

kJ/mol compared to 139 kJ/mol) (96). Duan et al. (97, 98) synthesized Fe particles on top 

of carbon nanofibers and achieved 51.3% conversion at 600°C in pure ammonia. On mica 

supported Fe/CNF catalysts, the activity was enhanced to 98.8% at the same temperature, 

due to the formation of small and highly dispersed Fe particles on top of the CNF. Lu et al. 

(99) synthesized Fe nanoparticles supported on CMK-5 carbon and SBA-15 and were 

found to be completely immobilized inside the channels of the supports. Fe/CMK-5 

showed complete conversion of ammonia at 700°C. The addition of alkali metal promoters 

to Fe catalysts have been shown to prevent sintering of Fe nanoparticles (100), but overall, 

activities of Fe based catalysts normalized to the content of their active metal content are 

roughly two orders of magnitudes less activity than Ru based systems (88).  

It has been shown that enhancing dispersion and reducing Ni particle size is the 

most effective method for enhancing the activity of Ni based catalysts (88). Ni based 

catalysts for ammonia decomposition have shown to be highly surface sensitive. This has 

been demonstrated by Li et al. (101) who studied ammonia decomposition over Ru and Ni 

catalysts supported on SiO2, MCM-41 and SBA-15. The Ni catalysts with the highest 

dispersion were found to have the lowest number of active sites. This suggests that the 
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different preparation methods used may have changed the Ni dispersion, morphology, and 

structure of the Ni nanoparticles. Additionally, they found that while K promotion greatly 

enhanced the activity of Ru based catalysts, K promotion had little effect on the Ni based 

catalysts supported on siliceous materials. Hu et al. (102) studied the effect of preparation 

method on Ni/ZSM-5 catalysts by synthesizing catalysts through wet impregnation, 

deposition-precipitation, solid state ion exchange, and modified solid state ion exchange 

methods. They found that the different preparation methods resulted in various Ni particle 

sizes, and that the smallest Ni particles were also the most active. They attributed the 

enhanced activity exhibited by the modified solid-state ion exchange synthesis method to 

the added dealumination process, which in turn allowed for framework Ni species to be 

confined in the ZSM-5. The Ni/ZSM-5 catalyst achieved almost complete conversion of 

ammonia at 650°C under pure ammonia. Lucentini et al. (103) achieved near complete 

conversion of ammonia at 550°C in 43% NH3 using CeO2 supported Ni catalysts, but these 

catalysts suffered from reoxidization to NiO at temperatures below 450°C. CeO2 has also 

been shown to promote Ni supported Al2O3 catalysts (104). In 15% NH3, a Ce/Ni ratio of 

0.1 resulted in roughly 75% conversion at 500°C. Ce/Ni molar ratios greater than 0.1 

resulted in a decrease in activity. The addition of CeO2 to Ni/Al2O3 catalysts suppressed 

sintering of Ni nanoparticles and reduced the apparent activation energy compared to 

Ni/Al2O3 catalysts.  

Co has also showed promise as a cost effect low temperature ammonia 

decomposition catalyst. Co has a calculated activation energy of 27 kJ/mol lower than Fe 

for ammonia decomposition and does not suffer from nitride formation (105). Czekajło et 

al. (106) studied the effect of synthesis conditions and promoters on catalytic activity of 
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Co based catalysts synthesized via precipitation method. Promotion by Ca, K, and Al acted 

to hinder sintering of Co nanoparticles and also had the highest number of active sites. 

Additionally, the found that higher precipitation temperatures resulted in smaller Co3O4 

nanoparticles. Torrente-Murciano et al. (107) demonstrated that microporous carbon 

supports were able to stabilize small Co nanoparticles and that ammonia decomposition 

activity was hindered by the addition of Cs, which is similarly observed for other non-

metal catalysts, but deviates from the relationships established for Ru based catalysts.  

1.2.4 Surface Sensitivity 

Both ammonia decomposition and synthesis are both structure sensitive reactions, 

which can be studied initially by measuring the reactivity of single crystals in ultra-high 

vacuum (UHV). Different surfaces will have different reactivities and product distributions 

reflect the difference active sites present on each surface. Strongin et al. (108) determined  

initial rates of ammonia synthesis over Fe(111), Fe(100) and Fe(110) surfaces and studied 

the effect of potassium over these crystal orientations under UHV reaction conditions.  

Fe(110) showed no activity for ammonia synthesis with adsorbed K, and the 

addition of K drastically increased the reaction rates over the (111) and (100) surfaces by 

inducing changes in the reaction order with respect to hydrogen and ammonia.  Dahl et al. 

(109) studied the dissociative chemisorption of N2 on Ru (0001) surfaces in order to 

determine the influence of step sites on the N2 sticking coefficient. This was accomplished 

sputtering Au onto a Ru (0001) metal surface. Typically, even clean metal surfaces will 

have some concentration of step sites present, especially those of high-index (110). They 

were able to isolate and measure reactivity over flat and stepped surfaces by depositing Au 
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onto the Ru (0001), which would preferentially poisoning step sites. The N2 sticking 

coefficient decreased by seven orders of magnitude with step sites were blocked, 

demonstrating that N2 dissociation occurs exclusively over stepped sites. While geometries 

of step sites cannot be physically measured or observed, density functional theory (DFT) 

calculations can be used to determine N2 dissociation energies over different geometric 

arrangements (111) and compared to the observed dissociation barriers from UHV 

experiments (Figure1.3a). These experiments formed the basis behind determining the 

most active site for ammonia decomposition. The site consists of an exposed threefold 

hollow site in close proximity to a bridge site, as seen in Figure1.3b. This configuration of 

Ru atoms is termed a B5 site, by the nomenclature describing statistical arrangement of 

atoms first proposed by Hardeveld and Hartog (112). Since then, other works have 

proposed that statistically, different Ru shapes and sizes will more likely have more B5 

sites than others (113–115). However, many studies simply conclude that higher activity 

of a catalyst must be due to more B5 sites present, either through electronic modification 

with a promoter or higher degree of metal dispersion.  

1.2.5 Electronic and Structural Modification 

The addition of different additives, specifically alkali metals, alkaline earth metals 

and lanthanide metals have shown to dramatically enhance activity. Ru catalysts promoted 

with K, Cs or Ba have shown to be very active for ammonia decomposition (116–118). 

The role of promoters is often unclear, whether they promote the formation of B5 sites, 

accelerate the recombination and desorption of nitrogen, or some combination of the two 

(119). The role of the promoter also varies significantly based on the promoter precursor, 

metal precursor and support used during synthesis. One study has shown that K is the best 
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promoter for Ru/Al2O3 catalysts (118), while another demonstrated that Na is most active 

for Ru/CNT (120). The acidity of the support can thus influence the interaction between 

the promoter and the support and also influence the optimal loading (61, 121). Yu et al. 

(122) studied the effects of alkaline earth metal amides for ammonia decomposition and 

found that Ru-Ba(NH2)2 and Ru-Ca(NH2)2 had higher turnover rates and lower activation 

energies than Ru-Mg(NH2)2 and Ru/MgO. Yin et al. (123) demonstrated that KNO3 

modified Ru catalysts were highly efficient went supported on CNT, but not as effective 

supported on MgO. Zhang et al. (124) compared Ru/MgO catalysts promoted with Cs- or 

K- from carbonate or nitrate sources, and found that CsNO3 resulted in the most active 

catalyst, albeit differences in the four promoted catalysts were very small. It is difficult to 

make direction comparisons across the literature due to the large differences in operating 

conditions and variations in synthesis parameters. For example, these two studies that both 

looked at KNO3 modified Ru catalysts resulted in one with an activity of ~25% at 450°C, 

and the other 40% at the same temperature and space velocity.  

Figure 1.2. (a) Dissociation and desorption barriers for nitrogen interaction with Ru 

(0001) surface. TS is the transition state. (b) Sketch of the active site for nitrogen 

dissociation (black atoms) at the Ru (0001) step as found by DFT calculations. Adapted 

from ref (109). 
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The differences in promoter activities may be due to residual precursor ions present 

on the catalyst surface. Wang et al. (61) studied the effect of different electron withdrawing 

groups (F-, Cl-, Br-, SO4
2- and PO4

3-) from different promoter precursors on ammonia 

decomposition for Ru/CNT catalysts. They found that KNO3 had the highest activity and 

lowest activation energy, and activity trends were as followed: NO3
- > OH- > CO3

2- > F- > 

Cl- > Br- > SO4
2- > PO4

3-
. Murata et al. (121, 125) also studied the effect of residual Cl- 

from RuCl3 precursors and found that it was detrimental to activity, but that alkali or 

alkaline earth metal hydroxides can act as scavengers for the chlorine ions. This has led to 

the use of other Ru precursors like Ru2(CO)12 and Ru(acac)3 which are more sterically 

hindered and will enhance the metal dispersion of the Ru particles compared to RuCl3. The 

effect of lanthanides on Ru based catalysts have shown to have a stronger promoter effect 

than alkalis (126). Lanthanide promoter mechanism may involve anchoring Ru particles to 

the support while additionally providing electron donation.  

1.3 High Throughput Experimentation (HTE) 

Few studies are comprehensive enough to provide a legitimate comparison across 

different catalysts due to the broad variation that is present in operating conditions and 

synthesis parameters. The variables include but are not limited to catalyst structure, surface 

area, metal dispersion, and interactions between the metal, promoter and support. To 

further complicate matters, these variables are all intertwined and correlated, thus making 

it difficult to deconvolute and make viable comparisons through different literature studies. 

In addition to variables associated with catalyst synthesis, heterogeneous catalysis has the 

added complexity of operating and synthesis conditions that will also influence the activity, 

selectivity, and stability of various catalysts.  
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High throughout experimentation (HTE) and combinatorial sciences were first 

introduced to the field of materials by Hanak in the 1970s stressing the power of parallel 

synthesis techniques (127, 128). These methods contrast the previous, one at a time 

approach to material discovery, commonly coined the “Edisonian” approach, due to the 

sequential nature of testing that Edison performed during his discovery of the incandescent 

light bulb filament. Over the following decades, these approaches to material discovery 

and synthesis were integrated into academic labs and companies. For example, Creer et al. 

(129) designed a multichannel microreactor for catalyst evaluation, where each of the 6 

reactors were attached to a gas chromatograph. HTE can be used to rapidly synthesize, 

screen and analyze a large number of materials in a short amount of time. An intelligent 

design of experiment based on domain knowledge is pertinent to success. Combinatorial 

methods have also been recently developed that allow one to explore multidimensional 

catalyst composition and process parameter spaces at a high level of resolution. Initial high 

throughput studies suffered from poor data quality and was not considered to have low 

scientific value (130). However, methodologies to accurately quantify compositions, 

conversions, and selectivity’s of diverse catalyst libraries now exist.  

1.3.1 HTE Screening Tools 

Design of Experiments (DOE) is an essential tool to HT screening and experiments. 

The interactions between large number of variables and the different amounts of these 

variables that are present in a catalytic system have already been highlighted by reviewing 

ammonia decomposition catalysts. DOE techniques are a way to minimize the number of 

experiments needed while maximizing the amount of information acquired through a pre-

determined number of variables and assessing the importance and interactions between 
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multiple variables. DOE can be useful for comparing several factors, screening for which 

factors are important, determining interactions between variables, and optimizing a 

response, such as activity (131). Combinatorial approaches to catalyst discovery have been 

employed for reactions such as dehydrogenation (132), oxidative methane coupling (133, 

134), NOx storage and reduction (135, 136), CO oxidation (137) and ethylene epoxidation 

(138). DOE encompasses factorial designs, screening designs, response surface 

methodologies, and analysis of variance to name a few.  

Machine learning (ML) has also been utilized to significantly increase the rate of 

material discovery. ML employs statistical algorithms to make connections between 

important features in a dataset and makes predictions from these learned relationships (139, 

140). Typically, a matrix of input features is constructed for which the algorithm can then 

construct qualitative or quantitative relationships between the features and the property of 

interest (141). In catalysis, ML techniques are often limited to computational data due to 

the massive number of datapoints necessary to generate an accurate model. These methods 

are capable of predicting a multitude of catalyst compositions (142–144). But 

experimentally, these catalyst compositions are not always physically feasible to 

synthesize. The limitation of time-at-a-time experimentation typical of experimental 

catalysis has previously limited the feasibility of ML in this field. But when coupled with 

data generated from HTE, accurate predictions of stable and synthesizable materials can 

be made (145–147). 
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1.3.2 HTE Analysis Techniques 

Early HTE studies in catalysis often utilized scanning probe mass-spectrometry, 

infrared (IR) thermography or optical imaging techniques such as cataluminescence (CLT) 

or laser-induced fluorescence imaging (LIFI) for analysis (148, 149). IR thermography is 

able to detect small changes in temperature at the catalyst surface, and thus can measure 

activity of exothermic reactions but cannot speciate between products. Similarly, CLT 

relies on detecting chemiluminescence emission of combustion reactions and LIFI relies 

on the breaking and forming of chemical bonds that can modify fluorescence of a molecule 

(132, 149–153). Spatially resolved FT-IR is both quantitative and qualitative but can only 

be applied to products with an IR vibration, and only when product vibrations are not 

convoluted (135, 154). The advantage of these optical imaging methods is that they offer 

parallel analysis of samples, but their uses are limited to specific cases. Scanning probe 

mass spectroscopy and gas chromatography have also been applied to HTE analysis for 

more complicated gas mixture, but can only be performed in a sequential manner, thus 

dramatically increasing the time for analysis and limiting them to only steady state 

applications (148, 149, 155). 

1.4 Dissertation Scope 

The work presented in this dissertation is motivated by the search for a low-cost 

ammonia decomposition catalyst that achieves high activity at temperatures at or below 

450°C. Chapter 1 has reviewed the underlying reasoning for studying catalytic ammonia 

decomposition and has presented the issues in the current technology as well as a 

comprehensive review of our currently knowledge. Additionally, this chapter sets up HTE 
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as the primary investigative tool for ammonia decomposition material discovery. In 

Chapter 2, the details are provided for the methods and theories behind the techniques that 

have been utilized for this work, which include catalyst synthesis, characterization 

techniques, and the various reactor configurations used throughout the work. Chapter 3 

goes into depth describing a baseline, K promoted Ru catalyst and provides understanding 

of the structural and morphological changes of this catalyst before reaction, during the 

working conditions, after reaction and in different synthesis environments. Chapter 4 will 

discuss the selection of design catalyst design space, high throughput screening, and 

characterization of the ammonia decomposition catalysts and compare the activity of these 

to the baseline catalyst described in Chapter 3. General insight into the mechanism of the 

catalysts will be discussed based on previous work using machine learning algorithms, 

crystallite size analysis, and general trends in activity based on the different metals position 

on the periodic table. Lastly, Chapter 5 will conclude this body of work and give a 

conclusion and perspective on the future of this research and technology. 
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CHAPTER 2 

THEORY & METHODS 

2.1 NH3 Decomposition Catalytic Activity Testing and Reactor Set Up 

2.1.1 High Throughput Reactor Set Up 

High throughput catalytic testing was conducted using a 16 channel parallel high 

throughput reactor which was previously built and optimized by the Lauterbach group 

(149). The reactor is composed of four ceramic radiant heaters (3 in ID, 6 in height), each 

of which heat four reactor tubes. Four on-off Proportional-Integral-Derivative (PID) 

controllers were used to control the power output of each of the heaters, which are 

controlled using an in-house written LABVIEW program. Additionally, the temperature in 

each furnace and reactor is measured using this software. A top view of the heater and 

reactor set up is shown in Figure 2.1. 

Typically, each reactor is loaded with 50 mg – 500 mg of catalyst supported onto 

stainless steel frits (10µm pore size, Chand Metallurgical) to hold the catalyst powders in 

place within the reactor tube. In order to ensure even flow distribution between the 16 

channels, a single gas inlet is split into 16 individual concentric capillary spirals and is fed 

to each of the reactor channels. The flow distribution system is contained inside a heated 

box. Further detailed information on this system can be found elsewhere (135, 138). 
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2.1.2 Quantitative Analysis using Spatially resolved FTIR  

In order to efficiently analyze the effluent from each reactor, parallel analysis of 

the product streams is required. Parallel analysis techniques primarily include optical 

screening methods, which include CTL, REMPI, ecIRT, FTIR and LIFI (149, 155). 

Sequential analysis using GC and MS techniques have also been used for various high 

throughput systems (128, 156, 157). Unlike some optical screening techniques, FTIR 

permits species identification for molecules that are IR active. Additionally, gas phase 

concentrations can be measured as a function of absorbance at a given optical path length. 

The incorporation of focal plane array (FPA) detectors provides the spatial resolution 

Figure 2.1. Top-view of the high throughput reactor. Adapted from ref (138). 
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necessary for parallel analysis using FTIR, and thus offers an instrumental multiplex 

advantage. Array detectors are massively multiplexed versions of single-element detectors, 

composed of individual detectors known as pixels.  

Previously, our group has developed a unique way to interface rapid-scan 

interferometers with a HgCdTe (MCT) FPA detector that allows for faster acquisition and 

data processing without sacrificing data quality (135, 149, 158). The imaging system 

consists of a Bruker Equinox 55 FTIR spectrometer, a 128x128 MCT FPA detector (Santa 

Barbara Focalplane, Goleta, CA, USA) operated at 1610 Hz and an integration rate of 0.046 

ms. Spectra are taken from a range of 4000-1000 cm-1 with a spectral resolution of 8 cm-1. 

A gas phase array sampling cell has been developed to ensure that each reactor stream is 

kept separated, and that no cross talk between streams is possible during data acquisition. 

The sampling cell consists of 16 stainless steel tubes, each capped with a ZnSe window 

sealed with o-rings. The effluent from the high throughput reactor enters and exists the 

sampling cell through tubing welded to the sampling cell. The tubes are then fitted with 

stainless steel rectangles at both ends, with sixteen holes cut out of each side, allowing the 

IR beam to enter only through the 16 stainless steel tubes. Specifically, an infrared source 

is generated within the spectrometer and exits through a side port, where it is then 

collimated, and expanded to enter the gas phase array. The infrared radiation exiting the 

gas phase array is then focused on the FPA. More information on the design of the sample 

cell as well as the optical set up can be found elsewhere (126, 138, 159). During data 

acquisition, an image of the reactor gas outlet is taken, as shown in Figure 2.2. The image 

contains 16,384 individual MCT detectors, or pixels, and each contains information for an 

interferogram. Here, each colored circle represents photon intensity corresponding to one 
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of the sixteen reactor channels. Data acquisition is controlled through an in-house written 

software named JAIMP (Just Another Image Processor) and images are recorded using 

WinIR 2009 software. During acquisition, 32 frames are captured within a single image in 

order to increase the signal to noise ratio. A Fourier Transform is performed on each 

individual frame, and the 32 IR spectra are averaged together to obtain the final image for 

one data point. Then, multiple IR spectra are averaged over for each reactor channel to 

Figure 2.2. Image of raw data collected using spatially resolved FT-IR. Each colored 

pixel correlates to a single interferogram. 
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obtain the final IR spectrum for each reactor channel. Figure 2.3 shows the FT-IR spectra 

for the NH3 v4 deformation mode for reactor 0 from 0.1% to 1.0% NH3 after processing of 

the raw data. 

After data acquisition and processing, the spectra are then quantified using the 

relationship established through Beer’s Law, shown in Equation 2.1.  

A(v̅)=ai(v̅)bci (2.1) 

The linear dependence of absorbance (A(v̅)) as a function of wavenumber (v̅), can be 

correlated to the concentration of a species (ci), and allows for IR spectra to be quantified 

within a linear regime. However, nonlinearities begin to arise when larger values of 

absorbance are measured, but in general remans linear for measured absorbance units less 

than 2 (160, 161).  FTIR calibrations for ammonia decomposition were carried out via 

GRAMS software and the PLS-1 regression model. Calibration points were collected in 

0.1 % increments from 0.1% to 1.0% NH3 in balance Ar. The model utilizes the IR active 

vibrations of NH3 that result from the symmetric and antisymmetric deformation modes 

that occur at roughly 1627 cm-1. The FT-IR spectra were integrated from 1925 cm-1 to 1350 

cm-1 for calibrations. Figure 2.4 shows the model results for reactor 0 and demonstrated an 

R2 value of 0.997. Statistical outliers were determined for each model by determining the 

Mahalanobis distance for each data point (162). Each reactor channel exhibited an R2 value 

of >0.99 demonstrating an excellent goodness of fit. After a calibration model was 

completed for each reactor channel, the models were validated by collecting FTIR of three 

randomly selected NH3 concentrations between 0.1% and 1.0%. The results of the model 

validation for each reactor channel are shown in Figure 2.5. The average relative error 

ranged from 1.24% to 6.7% over the three validation points.   
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The reproducibility of the high throughput reactor has also been tested by first 

running a set of reactions for their ammonia decomposition activity from 250°C to 400°C. 

Next, the catalysts were randomized in different channels and the reaction was run once 

more. The error between the measured activity for each catalyst at 300°C was taken to be 

the standard deviation of the two different randomized reactions. The activity 

measurements can be found in Table 2.1. The temperature 300°C was chosen because of 

the largest distribution of temperatures that was exhibited by the catalysts. The error at 

lower and at higher temperatures were much smaller than those shown at 300°C. The 

smallest error was found to be 0.6% and the largest error was found to be 8.9% which can 

Figure 2.3. FT-IR spectra of the v4 vibrational mode of NH3 from 0.1% (bottom) to 1.0% 

(top). 
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then be assumed to be the relative error between runs using spatially resolved FTIR for 

quantification of the ammonia concentration in the reactor effluent.  

2.1.3 PID Tuning 

A PID controller works by reading a sensor, and then computing the desired output 

to control a process variable by calculating the appropriate proportional, integral and 

derivative response and summing those three components to determine the output. PID 

controllers have a wide variety of applications and the tuning will depend greatly on what 

response is being measured and the characteristics of the output. In this case, the 

Figure 2.4. Measured vs. Predicted NH3 concentrations from 0.1 – 1.0% for reactor 0 

using PLS-1 regression model. 
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temperature of each furnace is being read and the output is the power output of the solid-

state relays used to supply power to the furnaces. Duty cycle refers to the ratio of the pulse 

width and period of a signal. Therefore, the PID controllers regulate the duty cycle of the 

solid-state relays, which in turn regulates the temperature of each furnace. The goal of the 

PID controllers is to quickly heat the furnaces without overshooting the desired 

temperature, and to regulate the temperature of each furnace. Accurate tuning is required 

in order to confirm that wild fluctuations in temperature are minimized. Figure 2.6 shows 

a block diagram for a typical closed loop system. The process variable is what is to be 

controlled, such as pressure, temperature, or flow rate. A sensor is used to measure this 

Figure 2.5. Model validation for each reactor channel. The black X corresponds to the 

measured concentration value. 
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variable and provide feedback to the control system. The PID controller tries to minimize 

the error between the process variable and the setpoint. The compensator refers to the 

control system algorithm and determines the system output, which in this case drives the 

heaters. This ultimately results in a closed, constant feedback loop system. The control 

Table 2.1. The standard deviation (Error %) between the same catalysts after they have 

been tested for ammonia decomposition at 300°C in two different randomly selected 

reactor channels where the reaction conditions are: T = 300°C, 10%NH3/Ar, 30,000 

mL/hr/gcat and atmospheric pressure. 
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performance will depend on the system, but in this case, it is desired to avoid dramatically 

overshooting the setpoint, which can occur with very fast initial heating. An example of 

the PID tunning for one of the four furnaces (Furnace 3) when heating from room 

temperature to 340°C is shown in Figure 2.7.  

The Proportional, Integral and Derivative components are manipulated until the 

desired response is given. Here, the red trace is the process variable (PV Sensor) and the 

white trace is the temperature of the furnace (Setpoint). The temperature of the furnace 

exhibits ±2°C about the setpoint after settling time with this tuning setup. Furthermore, the 

duty cycle of the solid-state relay exhibits a steady and constant sinusoidal response. 

Additional theory behind PID control as well as heuristics for tuning can be found 

elsewhere (163). However, we found that patience and trial and error approach resulted in 

the best tuning of each of the individual furnaces. Additionally, we want to minimize the 

percent overshoot over the set point and settling time of the process variable. 

2.1.4 High Throughput Screening of Ammonia Decomposition Catalysts 

Ammonia decomposition activity tests were carried out for the Ru substituted 

catalysts using 200 mg of catalysts per channel under 1%NH3 in balance Ar, and a space 

velocity of 30,000 ml-hr-1-gcat
-1. In some instances, 10% NH3 in balance Ar was used as 

the inlet concentration, and a separate calibration file for was made for each reactor channel 

for this concentration of ammonia. All reactions took place under atmospheric pressure. 

The reactor effluent was measured via FT-IR at intervals of 50°C from 250°C to 400°C. 

For each temperature, three data points were taken, and the reported activity is the average 

of these three data points, and the standard deviation is reported as the error. Catalyst bed 
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temperatures were measured using K-type thermocouples. A randomly selected channel 

was left empty during each experiment to ensure the accuracy of the calibration files and 

that zero conversion is observed in the empty reactor channel. NH3 conversion was 

calculated using the inlet and effluent concentration of NH3 as shown in Equation 2.2. 

NH3Conversion (%)= (1-
NH3outlet

NH3inlet

) *100% (2.2) 

Prior to activity measurements, catalysts were first heated under Ar to 450°C, and 

then exhibited to a H2 reduction in 10% H2/Ar for 1 hour. Catalysts were then cooled to 

250°C under Ar, where they were then exposed to NH3 and data collection took place after 

ten minutes to allow the system to equilibrate.  

2.1.4 Plug Flow Reactor Setup and Activity Testing 

A horizontal tube furnace (MTI Corporation) was utilized as the basis for a plug 

flow reactor system. The tube furnace is fit with a 3/8” OD stainless steel reactor tube. A 

1/8” diameter stainless steel tube is placed inside of the reactor tube at a set distance in 

order to maintain the same height of the catalyst bed for each experiment. The reactor tube 

is then packed with quartz wool, followed by 250 mg – 2 g of catalyst, and topped with 

quartz wool. The reactor system reaches temperatures up to 1250°C and allows for multiple 

Figure 2.6. Block diagram of a typical closed loop system. 
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types of gases and concentrations to be flow through. Brooks 5850e mass flow controllers 

(MFCs) were used to regulate the flow of each individual gas velocity. Additionally, the 

reactor is outfitted with a back pressure regular (Swagelok) on the effluent side of the 

reactor and can be pressurized up to 10 bar. The temperature of the catalyst bed is 

monitored during experiments with a K-type thermocouple situated directly inside the 

catalyst bed. The composition of the product gas stream was analyzed using a Shimadzu 

2014 gas chromatogram (GC), equipped with a thermal conductivity detector (TCD). The 

GC is equipped with a Mol Sieve 5A plot column for H2 and N2 separation. The 

concentration of H2 and N2 in the product stream were used to calculate 

the NH3 conversion at each temperature and were always found to be in stoichiometric 

proportions. In order to determine the NH3 conversion, the extent of reaction (Xe) was first 

calculated based off of the H2 concentration in the outlet and the inlet concentration of NH3 

(CNH3,in) as shown in Equation 2.3. More information on the extent of reaction can be found 

elsewhere (164). 

Figure 2.7. Response of the PID closed loop system as a function of time for Furnace 3 

and the duty cycle output of the solid-state relay. 
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CH2, out=

3
2
*Xe

CNH3,in+Xe

 (2.3) 

After the extent of reaction was determined, the mole fraction of NH3 in the outlet 

(𝐶𝑁𝐻3,𝑜𝑢𝑡) could be determined through Equation 2.4 and the conversion could then be 

calculated following Equation 2.4.   

CNH3, out=
CNH3,in-Xe

CNH3,in+Xe

 (2.4) 

Prior to activity measurements, catalysts were first heated to 450℃ in Ar and then 

subjected to a 10% H2 reduction for one hour.  For catalyst activity, NH3 conversion was 

then measured in 50℃ increments from 250℃ to 400℃. The catalyst bed temperature was 

measured using a K-type thermocouple and the space velocity was kept constant for each 

reaction at 5,400 ml/hrgcat. NH3 conversion using the support material ɣ-Al2O3 was first 

measured under these conditions and found to be negligible at all temperatures.  

Reaction orders were calculated by using a standard power law kinetic model as shown in 

Equation 2.5, where Pi indicants the partial pressure for i=NH3, H2, N2.  

r=A*exp (
-Ea

RT
) *PNH3

α PH2
β
PN2
γ

 (2.5) 

The order for each component can then be measured by varying the concentration 

of each component and measuring the rate of reaction. The power law model can then be 

linearized, such that the plot of the natural log of the rate of reaction as a function of the 

partial pressure of each component can be used to estimate the reaction order of each 

component from the slope. Through this method, one can determine the negative or 

beneficial effect the reactants and products have on the rate of reaction at a given 

temperature.  
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2.2 Catalyst Synthesis 

2.2.1. Impregnation Methods 

Impregnation methods for catalyst synthesis is achieved by contacting a solution 

containing active metal precursors with the support material, which is then dried to remove 

the solvent. This can be achieved either through the incipient wet impregnation (or dry 

impregnation) method or wet impregnation method (165, 166). The defining difference 

between the two methods is that an excess of solution is used during wet impregnation, so 

that a slurry type mixture containing the solvent, active metal precursors and support is 

created, and are mixed and constantly heated. Diffusion is the main method in which the 

precursors are deposited onto the support. In incipient wetness impregnation, a volume of 

solution containing the active metal precursors and solvent equal to approximately the pore 

volume of the support material is added to the dried support, where capillary action then 

draws the solution into the pores of the support.  

During this process, the impregnated support maintains a dry look on the 

macroscopic scale. The catalyst is then dried until the solvent has evaporated from the 

pores, and this process is repeated multiple times. Insufficient drying times or adding larger 

amounts of solution than that of the support pore volume will change the method of 

deposition from capillary action to diffusion, since there is no longer a capillary pressure 

difference present. The process of diffusion is much slower than the rate at which liquid is 

sucked into the pores of support through capillary action (166), and thus could lead to 

insufficient uptake of the active metal precursors.  
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Catalysts used for the high throughput screening of ammonia decomposition were 

synthesized using the incipient wetness impregnation technique and supported on SBA-

200 -Al2O3 (Catalox, 99.99%, 192 ± 20 m2/g). KCH3COO (Fischer Scientific, 98% purity), 

anhydrous RuCl3 and anhydrous chloride salts of the following: Mg, Ca, Sr, Sc, Y, Zr, Hf, 

Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Os, Co, Rh, Ir Ni, Pd, Pt Cu, Ag, Au, Zn, Cd, In, Sn, Pb, 

and Bi (Sigma Aldrich, ≥ 95% purity) were used without further modification. The support 

was first dried at 120oC for 2 hours before impregnation.  An appropriate amount of RuCl3, 

secondary anhydrous chloride salt, and KCH3COO were mixed to obtain 3:1:12, 2:2:12 or 

1:3:12 weight ratios of Ru:M:K (where M = Mg, Ca, Sr, Sc, Y, Zr, Hf, Nb, Ta, Cr, Mo, W, 

Mn, Re, Fe, Os, Co, Rh, Ir Ni, Pd, Pt Cu, Ag, Au, Zn, Cd, In, Sn, Pb or Bi) and dissolved 

in DI water. An aliquot of solution equal to the pore volume of the support was slowly 

added to the dried support until incipient wetness was achieved. The impregnated support 

was then dried at 120oC for 30 minutes, after which the process was repeated until the 

entire solution was deposited onto and in the support. The catalysts were then ground, and 

heated at 200oC for 2 hours, and subsequently calcined in air at 550oC for 3 hours. This 

synthesis procedure was adapted from previous work performed by our group, where for a 

4 wt% Ru, 12 wt% K catalyst supported on SBA-200 -Al2O3 was optimized by varying 

calcine temperature and time, and then measuring their ammonia decomposition activity. 

Details of this study can be found elsewhere (126). 

Further catalyst studies were done in order to determine the effect of the precursor 

on ammonia decomposition activity. KNO3 (Sigma-Aldrich, >95% purity), KOH (Sigma-

Aldrich, >95% purity), Ru(C5H7O2)3 (Sigma-Aldrich, 97%), and Ru3(CO)12 (Sigma 
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Aldrich, 99%) were used in lieu of the above Ru and K precursors and were synthesized 

following the same synthesis procedure.  

2.2.2 Strong Electrostatic Adsorption (SEA) 

SEA is a unique wet impregnation synthesis technique that is used to maximize the 

interactions between the precursors and support by manipulating the pH of the solution. 

This enhances the dispersion of the deposited metals onto the surface support and thus 

increases the amount of usable metal surface area for catalytic reactions. Ion adsorption 

will be dependent on the charging of the support in aqueous solutions and can be measured 

with a variety of methods (167). This is achieved by first measuring the point of zero charge 

(PZC) of the support used. Below the PZC, the hydroxyl groups present on the surface of 

a support will become protonated and thus positively charged at these pH values. Above 

the PZC, the hydroxyl groups will become deprotonated and thus negatively charged. Thus, 

by manipulating the pH of the solution, different metal cation or anion adsorption can occur 

with the support’s surface hydroxyl groups (168). The adsorption of these anions or cations 

occurs via strong electrostatic adsorption, hence the name of the synthesis method. The pH 

where the electrostatic interaction is strongest is the targeted pH range during synthesis. 

Through this method, a monolayer of precursor can be adsorbed onto the surface of the 

support, which can produce incredibly small and highly dispersed nanoparticles after 

reduction, which removes the precursor ligands.  

Here, SEA synthesis was used to synthesize a catalyst containing 1% Ru, 12 % K 

supported on γ-Al2O3 and a 4% Ru and 12% K catalyst, in order to determine the effect of 

higher dispersion of ammonia decomposition activity, and to isolate the Ru species present 
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on the catalyst, as the wet impregnation methods (as will be shown later) produces a variety 

of Ru species on the catalyst surface, and isolation of one proves to be difficult. Therefore, 

SEA synthesis helps us target small, isolated Ru clusters during synthesis which can then 

be contrasted with the activity of various Ru species made through wet or dry impregnation 

techniques. The SEA catalyst was synthesized by the Regalbuto group following a 

previously outlined method (169, 170). Briefly, Catalbox brand SBA-200 γ-Al2O3 was 

used as a support, potassium hexacyanoruthenate (II) hydrate (Sigma-Aldrich) and 

potassium nitrate (Fischer Scientific) were used as the precursors. The alkali metals are 

first introduced by dry impregnation and then the Ru was introduced in sequential SEA 

steps with intermittent drying and reduction at 250°C to decompose the adsorbed precursor. 

2.3 Characterization of Catalysts 

2.3.1 X-ray Diffraction (XRD) 

XRD is a powerful tool used to determine crystal structure and various crystal 

imperfections. For powdered and polycrystalline samples, a large number of randomly 

oriented tiny crystals should be present for phase identification and to determine crystallite 

size, strain, and faulting (171). In order for X-rays to be diffracted, materials must exhibit 

long range periodic arrangement of one or more atoms which are known as crystal lattices. 

There are 7 crystal families composed of triclinic, monoclinic, orthorhombic, tetragonal, 

cubic, trigonal and hexagonal, and 14 possible crystal lattices, known as the Bravais lattices 

which can be generated from 3-unit vectors and a set of integers commonly referred as hkl 

values. Therefore, different families of crystals will result in different diffraction patterns, 

allowing for phase identification based on the spacing between different layers of atoms (d 
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spacing) in the crystal and angle of diffraction.  Constructive inference of monochromatic 

X-rays occurs when successive planes of atoms separated by a distance d, in multiples of 

n wavelengths, thus satisfying Bragg’s Law, shown in Equation 2.6. A countertop 

diffractometer (MiniFlex II, Rigaku) was used for XRD measurements using a Cu-Kα X-

ray (λ=1.542 Å) source. The diffracted X-rays are collected in a small receiving slit located 

on a moving counter arm. During the measurement, the counter arm turns at constant 

angular velocity about the fixed sample, determined by user-defined instrument conditions. 

The detector position is recorded as the angle 2theta, (the angle between the incoming and 

outgoing x-rays) and records the number of X-rays at each angle that are diffracted from a 

crystal. In this study, XRD patterns were typically collected between 10 and 60 2θ at a rate 

of 1.5°/min and at a step scan size of 0.02°. XRD patterns were collected for each catalyst 

synthesized in order to perform phase identification and to determine the average crystallite 

size of the Ru species in each catalyst. 

Particle size broadening can be determined using the Scherrer’s Equation shown in 

Equation 2.7, where K is the shape factor,  𝜆 is the X-ray wavelength, L is the crystal 

dimension, and B(2θ) is the full-width half max (FWHM).  

B(2θ)=
Kλ

L cos θ
 (2.7) 

Although Scherrer’s equation was originally derived for cubic crystal systems, it can be 

used as approximation for non-cubic systems when the crystal dimension L is interpreted 

as the average crystallite size, since peak breadth increases as a function of 1/cosθ, and thus 

becomes more pronounced at larger 2theta values. Therefore, the major hkl reflections 

present at lower 2θ values were used when possible, to determine the average crystallite 

size. In order to determine the FWHM, a curve fitting and data analysis program Fityk 
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(1.3.1) was used for profile fitting and baseline subtraction for each of the XRD patterns. 

XRD reflections were fit using the Pseudo-Voigt approximation since peak broadening of 

each reflection contains both a Gaussian (particle broadening) and Lorentzian contribution 

(strain broadening). 

2.3.2 Scanning Electron Microscopy/Energy Dispersive X-ray Spectroscopy 

(SEM/EDX) 

SEM is an electron microscopy technique that uses a beam of high-energy electrons 

(typically between 5 keV – 20 keV) that are dissipated when the incident electrons hit a 

solid sample and decelerate. Secondary electrons produce SEM images that can provide 

information on particle morphology and texturing, as well as crystallinity and chemical 

composition. Chemical compositions can be determined from photons generated from the 

sample. Each element generates a characteristic X-ray when inelastic collisions occur 

between the incident electron beam and electrons in discrete orbitals of an atom. The 

characteristic X-ray is produced when an excited electron returns to lower energy state and 

is related to the differences in energy levels of the electron, and thus is unique for each 

orbital and for each element.  

2.3.3 Transmission Electron Microscopy (TEM) 

In contrast to SEM, TEM is an electron microscopy technique that uses a high 

voltage beam that is either scattered by the sample or passes through it. The electrons that 

pass through the sample are collected onto a fluorescent screen to produce an image of the 

sample. The samples must be very thin in order to let electrons pass through the sample. 



www.manaraa.com

43 

2.3.4 Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR is a spectroscopic technique used to obtain an infrared (IR) spectrum of a 

sample or molecule. IR radiation may induce vibrational excitation, at which point a 

molecule will absorb IR radiation that corresponds to the energy of these vibrations, i.e., 

resonant frequencies. Molecular vibrations are only IR active if they induce a change in the 

molecule’s dipole moment. The amount of energy absorbed by the sample can be 

determined by analyzing the transmitted light. Historically, an IR spectrum was collected 

by passing a monochromatic beam through a sample and determining the amount of IR 

radiation absorbed at each individual wavelength using a dispersive spectrometer (172). 

FTIR differs by utilizing a broadband light source to collect information from all 

wavelengths simultaneously. A comprehensive discussion on the FT-IR can be found 

elsewhere (173).  

Generally, FTIR utilizes a broadband radiation source which passes through a 

Michelson interferometer, through the sample and finally to the detector. The Michelson 

interferometer is responsible for modulating the polychromatic light, so that a different 

combination of wavelengths is produced at each moment. A schematic of a Michelson 

interferometer is shown in Figure 2.8. A Michelson interferometer is a device that can split 

a beam into two separate paths and then recombine them after a path difference as been 

introduced for one of the beams. This is achieved by splitting the radiation source using a 

beam splitter, where the beam is partially reflected to a fixed mirror, and partially 

transmitted to a moving mirror. The moveable mirror is moved at a constant velocity, and 

both beams are reflected off of the mirrors and back to the beam splitter, where the 

combined beams will be reflected back to the detector. There, the two beams experience 
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either constructive interference or destructive interference based on the path of the two 

beams before recombination. The path difference between the two beam is 2(OM-OF) and 

is the optical path difference (OPD). At a constant wavelength and an OPD of zero or any 

multiple of the wavelength, the two beams are in phase and constructive interference 

occurs. At any other OPD, the two beams are out of phase and destructive interference 

occurs. Therefore, the maximum intensity at the detector will occur at an OPD equal to n 

multiples of the wavelength. The detector can record the intensity of the beam as a function 

of OPD (cm) or as a function of time (s) for mirrors moving at a constant velocity. The 

interferogram is then converted into a spectrum by performing a Fourier transform, which 

Figure 2.8. Michelson Interferometer 
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converts the measured light absorption at each OPD into the absorption at each wavelength.  

The Fourier transform and Michelson interferometer dramatically decreases the time of 

acquisition needed to collect an IR spectrum, and eliminated the need for a monochromator.  

For polychromatic radiation sources, the measured interferogram is the result of the 

interferograms corresponding to each wavelength in the radiation source. 

2.3.4.1 Diffuse Reflectance Infrared Spectroscopy (DRIFTS) 

DRIFTS is a technique that analyzes IR radiation that is scattered from a sample, 

typically a fine powder or rough surface. Diffuse reflection refers to the scattering of light 

from a surface in many directions, instead of at a specific angle. For a fine powder or small 

particles, an incident beam can either be reflected off of the surface of a particle or 

transmitted through it. A transmitted beam can then pass through another particle where it 

can again be reflected or further transmitted. This method is primarily used when the 

transmission of an infrared beam through a sample is not feasible.  

2.3.4.2 CO Adsorption 

DRIFTS can be used to investigate the nature of adsorbed species on metal surfaces 

in order to gain insight into the metal surface configuration (174). The resultant stretching 

frequency of CO will depend on the bonding mode of CO, the electron density of the 

adsorbing metal and the metal surface configuration (175–178). Binding of CO to a metal 

surface can occur either through donation of an electron pair from CO to a metal orbital 

forming a σ-bond, or through π-backdonation from a metal d orbital to CO (179–182). The 

later requires the metal to have d electrons and for the metal to be in a low oxidation state. 

CO adsorption through π-bonding weakens the CO bond in relation to gas phase CO as 
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electrons fill the π-antibonding orbital of CO. This results in a decrease in the CO stretching 

vibrational frequency compared to gas phase CO. The degree of weakening will depend on 

the metal and the geometry of the adsorption site, and thus provides detail information of 

the catalyst surface and can identify ensembles of catalytically active sites (183). In other 

cases, the vibrational frequency of CO can increase with respect to gas phase CO with 

increasing charge on the metal center, indicating a strengthening in the CO bond. 

Therefore, the number of carbonyl stretches, their position and relative intensities will 

provide insight into the nature of the atomic surface configuration of the catalyst.  

For this study, a Bruker Vertex 70 spectrometer equipped with a Mercury Cadmium 

Telluride detector (MCT), Bruker Praying Mantis diffuse reflection attachment and a high 

temperature, low pressure reaction chamber were used to collect infrared spectra. Spectra 

were typically collected from 4000 cm-1 to 1000 cm-1 at a spectral resolution of 4 cm-1 and 

averaged over 512 scans. The reaction chamber consists of ZnSe windows and allows for 

gas flow through the chamber, as well as heating up to 1000°C. The reaction chamber was 

used to probe the interaction between various gas adsorbates and metal nanoparticles. 

Catalyst powders were first ground with a mortar and pestle and packed into the sampling 

cup (10mm dia.) without further modification. The powders are held in place with a small 

stainless-steel mesh.  

Prior to adsorption of CO, catalysts were first heated under He (99.999%, Airgas) 

to 450°C and then subjected to a hydrogen reduction in 10% H2/He for one hour. The 

catalyst was then further heated to 460°C under He for ten minutes in order to remove any 

H2 than may have adsorbed onto the metal surface during the reduction pre-treatment. 

Then, the powders are cooled to 50°C under inert gas where a background scan is taken. 
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Next, the catalysts are subjected to 1000 ppm CO in balance He for ten minutes. The 

reaction cell was then flushed with He and an IR spectrum was collected and averaged with 

the background.   

2.3.5 Raman Spectroscopy  

Raman spectroscopy is a vibrational technique that relies on inelastic light 

scattering, or Raman scattering (RS) to gain insight into a material’s chemical structure. A 

comprehensive text on Raman Spectroscopy can be found elsewhere and used primarily 

for discussion here (184). In contrast to FTIR, Raman active vibrations occur based on a 

molecule’s polarizability. Additionally, photons do not need to have an energy that matches 

the difference in energy levels of a molecules ground state and vibration state in order to 

be scattered. Raman spectroscopy utilizes a monochromatic radiation source which 

interacts with a molecule by distorting its electron cloud. The polarized molecule is 

promoted to a virtual energy state and the photon is then re-emitted. If the incident photon 

induces nuclear motion from the molecule, energy will be transferred from the photon to 

the molecule or, from the molecule to the photon and RS occurs. The strength of RS is 

proportional to the fourth power of the excitation frequency. RS measures the differences 

in energy between n and m vibrational states by subtracting the energy of the scattered 

photon from that of the incident photon. Stokes scattering occurs when RS from the ground 

vibrational state leads to absorption of energy by the molecule promoting it to a higher 

excited vibrational state, n. If a molecule is present initially in an already excited state, then 

this process is referred to as anti-Stokes scattering and the molecule returns to its ground 

vibrational state, m and results in a negative Raman shift. Anti-Stokes scattering can be of 

interest if the molecule exhibits fluorescence but is typically much weaker than Stokes 
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scattering. Intense RS occurs from vibrations which cause a change in the polarizability of 

the molecule’s electron cloud. RS can also occur due to lattice vibrations of a crystal either 

longitudinally or perpendicularly to the perturbation.  

 Raman spectra were collected using a Horiba XploRA Plus Raman spectrometer 

equipped with a light microscope with 10x, 20x and 50x magnification. The spectrometer 

is equipped with a Linkim TMH600 environmental cell so that in-situ and operando studies 

of catalyst surfaces can be conducted. Typically, a monochromatic laser is focused onto a 

sample and the scattered light is focused onto a charged couple device (CCD) that is cooled 

to -70°C to reduce background noise. As mentioned previously, RS is measured as the 

difference between the energy of the incident photon and the photon scattered by the same. 

The intensity is measured as a function of Raman shift (∆ cm-1) at a constant excitation 

source. The powder was loosely packed into the quartz crucible of the TH600 environment 

cell and packed down to create as flat a surface as possible. Care must be taken in choosing 

the correct excitation source, laser power, exposure time and working distance especially 

in Raman experiments involving elevated heating. Since RS is proportional to the fourth 

power of the excitation source, shorter wavelengths will provide stronger Raman signal. 

Additionally, longer wavelengths will penetrate deeper into the sample and thus could 

provide more signal from the substrate or holder than from the materials of interest.  

A 437 nm excitation source was used at 15 mW. Spectra were collected by 

irradiating the same for 15 seconds, followed by 15 seconds of delay to allow the sample 

to cool and avoid localized heating. Five spectra were collected at each point and then 

averaged together to increase the signal to noise ratio.  
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2.3.6 Temperature Programmed Reduction (TPR) 

TPR is a technique that monitors a chemical reaction as a function of temperature. 

The temperature is ramped linearly, and typically the gas content both before and after the 

reaction is measured. In the case of TPR, typically, a known amount of diluted H2 is 

introduced to the catalyst, and reduction events will occur with increasing temperature 

when a reducible metal is present on the catalyst. After the reduction occurs, the reaction 

between the metal oxide and H2 gas will produce H2O, and the amount of consumed H2 is 

measured using a thermal conductivity detector. Heating rates are generally between 

0.1°C/min and 20°C/min. Insight into the temperature at which supported metal oxides 

occur can ensure that sintering is avoided, and complete reduction is reached during any 

reduction pretreatment steps that occur before a chemical reaction takes place. Variations 

in strong metal support interactions and the crystallite size of the supported metal oxide 

will influence the temperature at which reduction events occur.  

Additionally, TPR patterns can provide insight into whether the precursor salt is 

still present in the catalyst. For example, TPR of Rh/SiO2 made with chloride precursors 

will exhibit a higher temperature reduction of Rh-O bonds and a lower temperature 

reduction of Rh-Cl bonds. Additionally, the area under the TPR curve represents the 

amount of H2 consumed by the catalyst per mole of metal atoms. TPR can also indicate 

whether two metals are in contact or not, specifically in the case of bi-metallic catalysts 

(185). 

For this work, an AutoChem II 2920 benchtop instrument was used for H2-TPR 

experiments. A glass U-tube was used as the reaction vessel, which is first loosely packed 
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with quartz wool, followed by 100 – 200 mg of catalyst, and then topped with loosely 

packed quartz wool. A K-type thermocouple is placed inside the catalyst bed in order to 

measure the temperature of the catalyst during reaction. Before the TPR experiment, the 

catalysts are first dried at 120°C for 60 minutes under Ar to remove any physisorbed water 

from the surface that may misconstrue the TPR measurement. After the drying process, the 

catalysts are cooled to 50°C, and subjected to 10%H2/Ar. A ramp rate of 10°C/min is 

typically used, from 50°C to 600°C. H2 consumption is determined based on the moles of 

metal and using AgO standard sample for calibration of the TCD.  

2.3.7. Pulse Chemisorption 

Chemisorption is a technique that can be used to determine active metal surface 

area, crystallite size, number of active sites and metal dispersion over a support. Commonly 

used gases include H2 and CO for chemisorption onto metal surfaces and knowledge on 

the number of H2 or CO atoms that one active site can adsorb is necessary for analysis and 

for choosing which gas to use for chemisorption experiments. The rate of uptake of a probe 

gas will simply the product of the flux and sticking coefficient, assuming that the process 

is non-activated. Pulse chemisorption to measure active sites and metal dispersion should 

be a non-dissociative adsorption process.  

Pulse chemisorption experiments are carried out on an AutoChem II 2920. samples 

are first heated to 450°C under inert and exposed to a hydrogen reduction pretreatment at 

450°C for one hour in 10%H2/Ar. Next, the temperature is increased slight to 460°C in 

order to remove any strongly bound H2 leftover from the reduction. The samples are then 

cooled to 50°C in Ar for the chemisorption experiment. A known amount of reactant gas 
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is pulsed over the sample and the amount of H2 adsorbed is measured using a TCD. The 

pulses of reactant gas continue until the amount of H2 measured by the TCD is constant, 

indicating that the active sites of the sample are completely saturated with reactant gas. The 

result from a typical pulse chemisorption experiment is shown in Figure 2.9 for H2 

chemisorption over a 4 wt% Ru, 12 wt% K catalyst supported on ɣ-Al2O3. Each pulse gets 

progressively bigger until all active sites have reacted, and the pulsed gas leaves the sample 

unchanged. Knowing the weight loading of the active metal in the sample, as well as the 

atomic characteristic of the metal, can then be used to calculate average crystallite size 

(assuming spherical particles), % metal dispersion, exposed metal surface area and the 

number of active sites in a catalyst sample.  

2.3.8 Arrhenius Plot 

For elementary reactions, the temperature dependence on the rate constant is given 

by the Arrhenius equation shown in Equation 2.8, where r is the rate of reaction (mol/kg/s), 

A is a pre-exponential factor, and Ea (kJ/mol) is the apparent activation energy.  

r=A*exp (
-Ea

RT
) 

(2.8) 

The apparent activation energy was measured in a diffusion limited regime and was 

calculated by linearizing the Arrhenius equation and plotting the natural log the rate of 

reaction as a function of inverse temperature. Due to the various diffusion and adsorption 

steps associated with heterogeneous catalysis, various regimes can control the rate of 

reaction, including diffusion through a boundary layer, intraparticle diffusion and finally a 
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combination of adsorption, surface reactions and desorption of products. Therefore, it is 

important to measure the apparent activation energy at lower temperatures, where diffusion 

of the reactants through the boundary layer and through the pores is fast compared to the 

rates of the surface reactions. This ensures the measured  rate of reaction used to calculate 

the apparent activation energy is controlled by the intrinsic reaction kinetics (46).  

A lack of linearity can be observed in the linearized Arrhenius equation when the 

regime which controls the rate of reaction changes reaction kinetics (46). A lack of linearity 

can be observed in the linearized Arrhenius equation when the regime which controls the 

rate of reaction changes. In this study activation energies were calculated in 100% NH3 at 

Figure 2.9. H2 Pulse Chemisorption over 4 wt% Ru, 12 wt% K catalyst supported on ɣ-

Al2O3. 
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a space velocity of 5,400 mL/hr/gcat between 2 – 15 % conversion. Catalysts were tested 

for activation energies in two separate experiments. The standard deviation between the 

two calculated apparent activation energies is given as the error, and the average of the two 

measurements is reported as the apparent activation energy for each catalyst.   
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CHAPTER 3 

INVESTIGATION OF THE FORMATION AND WORKING 

STATE OF K-RU HOLLANDITE CATALYSTS FOR 

AMMONIA DECOMPOSITION 

While the activity of Ru based catalysts for ammonia decomposition is well known 

to be enhanced by alkali metals and alkaline earth metals, typically these promoters are in 

the range of ppm levels up to 3%. Previously we have shown that promotion of large 

amounts of K (up to 36%) can be beneficial for low temperature ammonia decomposition 

for Ru catalysts supported on γ-Al2O3 (118, 126). The enhanced activity was contributed 

to the formation of K and Ru based hollandite structures on the surface of the catalyst. 

While very little is known about supported hollandite catalysts, let alone the catalytic 

properties of K-Ru hollandites, unsupported Mn based hollandite catalysts have been 

thoroughly studied for a variety of oxidation reactions (186–189). Additionally, these 

structures are typically synthesized via solid state reactions or through hydrothermal 

synthesis methods (190–196). Therefore, it is interest to better understand the formation 

mechanism of K-Ru hollandite during various impregnation synthesis techniques, variables 

that influence the formation of hollandite, the working state of the K-Ru hollandite 

catalysts, and whether or not the formation of the hollandite structure is beneficial to the 

reaction, compared to the “ideal” Ru nanoparticle size of 1.8 to 2.5 nm, suggested in the 
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literature. Additionally, we determined that K act to promote the reaction by chemically 

modifying the Al2O3 support surface, and by also acting as a Cl- scavenger, thus, mitigating 

the negative effect on reactivity that free Cl- are known to exhibit for ammonia 

decomposition. 

3.1 Hollandite Background 

Hollandite (often referred to as OMS-2 or cryptomelane type materials) refers to 

both the Ba Mn oxide mineral and to a specific crystal structure that can form with various 

metal cations and transition metals. These crystal structures consist of a one-dimensional 

tunnel structure, where a cation such as K, Na or Ba ion occupies the tunnel sites. The 

tunnel themselves are composed of 2x2 MO6 (where M = transition metal) octahedrons 

that are connected through edge sharing and corner sharing oxygens and can be doped with 

various transition metals. The hollandite family has stoichiometry of Ax(B, M)8O16 where 

A is an alkali or alkaline earth cation, B is a trivalent cation which may or may not be 

present, and M is a transition metal such as commonly used Ti and Mn. Examples include 

Na-TiO2 hollandite (197), K-MnO2 hollandite (187, 194, 195, 198–200), Li-TiO2 (201), K-

Ti,FeO2 (202), Ag-MnO2 (203) and Na-VOx (204) to name a few. Hollandites have been 

used for a variety of chemical reactions due to their mild surface acid-base properties and 

ion-exchange properties. K-MnO2 hollandites are highly active for a variety oxidation 

reactions such as CO oxidation (205–207), oxidation of ethyl acetate (208, 209), partial 

oxidation (210–212) due to the presence of Mn in different oxidation states and highly 

mobile lattice oxygen species (213). However there is very little information present on K-

RuO2 type hollandite aside from the crystal structure and electronic properties (214). For 

simplicity, K-MnO2 type hollandites will be discussed moving forward.  
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Typically, hollandite can be synthesized through hydrothermal methods (186, 198, 

215, 216)  and solid state reactions. The mechanism for formation is generally thought to 

occur through initial nucleation and phase ordering of the K and Mn precursors into a 

layered structure, where the layers then collapse to form the 2x2 tunnel structure. Portehault 

et al. (217) reported the synthesis of K-MnO2 hollandites through low temperature routes 

and studied the growth mechanism. After initial mixing of the precursors for a few hours 

at room temperature, the initial precipitate was found to be poorly ordered and no hollandite 

peaks were from XRD analysis. After mixing at 60 or 95°C, the pH fell below 2.0 and 

characteristic hollandite reflections appeared in the precipitate XRD patterns. They 

determined that high acidity increased the kinetics of phase transformation. Performing the 

synthesis with a mixture pH > 2.0 resulted in the early precipitate not transforming into 

hollandite after one week of aging. The precipitate was indexed to the layered MnO2 

birnessite phase. The authors state that growth occurs through a dissolution-crystallization 

process which is pH dependent. As the pH becomes more acidic, the Mn species become 

more soluble thus promoting the growth of the nanowires. However, proton chemisorption 

stabilizes small particles that initially form and can limit the growth state and limit 

longitudinal growth. Liu et al. (215) have also indicated that a thin, layered precursor forms 

during the early stages of synthesis followed by the appearance of lattice fringes, which 

indicate the formation of the hollandite tunnel structure. They conclude that the tunnel 

formation occurs when some of the Mn (III) octahedra from the layered structure migrate 

into the interlayer region and become corner-sharing octahedra, thus making the “walls” 

of the tunnel. Gao et al. (218) performed in-situ and ex-situ studies to determine the 

structural and morphological formation of β-MnO2 and K-MnO2 hollandite materials under 
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hydrothermal reaction conditions. They found that γ-MnO2 spheres with poorly defined 

1x2 tunnel structures first formed and grew in size with increasing reaction time. The 

spheres began forming rod like structures on the peripheral of the particles that further grew 

in length with increasing reaction time and finally transformed into β-MnO2 after 240 

minutes. The phase transformation was thought to occur through the collapse of the 1x2 

tunnel framework of γ-MnO2 and rearrangement of the MnO6 octahedra to form a 2x2 

tunnel framework.  

Shen et al. (219) studied mixed valent Mn oxides through in-situ XRD. They 

determined that, beginning with a layered structure precursor, the layers first compressed 

and simultaneously formed a 1x 2 tunnel structure, of which increased with increasing 

reaction time. After 75 minutes and reaction temperature of 180°C, some of the 1x2 tunnels 

began to transform to the 1x1 tunnel structure (β-MnO2) and was completely transformed 

after 150 minutes. They further studied the phase transformation of MnOOH precursor to 

form K-Mn hollandite, which formed within ten minutes at 120°C. Chen et al. (220) 

proposed a framework to predict the formation and mechanism for growth of different 

MnO2 polymorphs based on particle size and solution composition by using in-situ X-ray 

scattering. They determined that the hydrothermal synthesis of MnO2 proceeds through 

different crystallization routes under different K ion concentrations. Wang et al. (186) 

studied the reduction profiles for K-MnO2 (K-Hol), H-MnO2 (H-Hol) and β-MnO2 (1x1 

tunnel structure). β-MnO2 exhibited three reduction peaks at 320, 350 and 450°C which 

corresponded to the reduction of MnO2 to Mn2O3 to Mn3O4 to finally MnO. H-MnO2 

showed two reduction peaks at 330 and 490°C which was assigned to the reduction of H-
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Hol to Mn3O4 and then to MnO. K-Holl exhibited reduction peaks at much lower 

temperatures, between 200 – 370°C.  

3.2 Modification of Al2O3 with K 

Alkali promoted Al2O3 catalysts are commonly used for the transesterification of 

palm kernel oil, sunflower oil, coconut oil and rapeseed oil The supported alkali catalysts 

can be synthesized via incipient wetness impregnation using nitrates, fluorides, iodides, 

and carbonate based potassium precursors after calcining to temperatures around 450-

550°C  (221–225), where K aluminates are formed as the active site for these reactions. 

Potassium carbonate is commonly used to modify the acid-base properties of alumina, as 

it reacts with the surface hydroxyl groups to readily form Al-OK compounds (226). K+ 

ions derived from K2CO3 supported on alumina have been shown to replace the surface 

hydroxyl groups to form O-K compounds, but no Al-OK compound formation was 

observed up to 900°C (227).  

Iordan et al. (228) that K2CO3 modified alumina resulted in the uptake of K+ on 

through cation exchange with isolated Al-OH groups to form Al-OK surface species.  They 

determined that most of the surface hydroxyl species had been eliminated by 120°C and 

KAl(CO3)(OH2) surface species formed. Additionally, as the amount of potassium salt 

exceeded the saturation uptake of K+, bulk potassium salts were found to form on the 

alumina surface. Wang et al. (229) studied the effect of loading K2CO3, KHCO3 and KOH 

on alumina  and their ability to generate superbasic sites, which pH as great as 33. For 

K2CO3 loadings below 10%, XRD patterns showed that no bulk K2CO3 or Al-OK species 

formed, indicating a high dispersion of K. At 10 wt%, KAl(OH)2CO3 was formed, and bulk 

K2CO3  began to form at loadings greater than 20%. As for KHCO3, the same Al-OK 
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compound formed as with K2CO3 between 10 -20%.  Through TG-DTA and TPDE 

analysis, the authors determined that the KAl(OH)2CO3 compound decomposes between 

225 – 350°C, which was  accompanied by the evolution of CO2 and H2O within the same 

temperature regime. The authors determined that KAl(OH)2CO3 thus decomposes to form 

KAlO2, H2O and CO2.. The formation of Al-OK compounds from wet impregnation has 

been proposed to occur in two different manners: in one mechanism, the non-specific 

adsorption of K cations occurs through electrostatic attraction to deprotonated Al-O- 

surface groups, which then forms an ion pair with the positively charged K. Secondly, 

specific adsorption can occur through cation exchange with Al-OH surface groups which 

can form chemical bound Al-OK groups (228, 230). 

Sun et al. (231) attempted to create superbasic sites on TiO2, ZrO2 and SiO2 by 

loading these supports with KNO3. They were able to determine that dispersion of K nitrate 

was not a function of support surface as, the highest dispersion was exhibited on the lowest 

surface area, and the lowest dispersion on the highest surface area support, silica. They 

determined that octahedral vacant sites present on the various supports determined 

dispersion of KNO3 and proposed that K+ deposit onto the support through insertion into 

the surface vacant sites which agrees with the previously cited literature. The authors 

determined that only alumina and zirconia exhibit the necessary characteristics needed to 

form superbasic sites. 

Zaki et al. (232) found that functionalization of alumina with K resulted in the 

formation of Al-OK groups, which stabilized Rh0 and prevented Al-OH reformation under 

hydrolysis conditions.  Additionally, they determined that the Al-OK groups were stable 

during hydrogen reduction at 200°C and under exposure to H2O and O2. 
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Due to the large loading of K promoter used during this study, we investigated the 

effect of K on the surface of support. Figure 3.2 shows the XRD pattern of 12 wt% K 

supported on ɣ- Al2O3. KCH3COO was used as the K precursor and synthesized as 

described in Chapter 2.2. In the absence of Ru, we clearly see the formation of 

KAl(OH)2CO3 with the addition of K to the support (228, 233). To the best of our 

knowledge, there is no information of K supported Al2O3 catalysts from using KCH3COO 

as a precursor, as commonly used precursors as K2CO3 and KHCO3 as discussed 

previously. Due to the variety of different vacancies that may be present in ɣ-Al2O3, the 

unidentified XRD reflections may be due to different Al-OK species with different 

carbonate or carbonyl type ligands, which may occur due to the two different mechanisms 

of K+ adsorption that can occur on ɣ-Al2O3. No reflections related to K2CO3, KHCO3, KOH 

or KCH3COO were observed. The surface area of the ɣ-Al2O3 support used here is 192±8 

m2/g and has a maximum surface hydroxyl coverage of 11 OH-1 nm-2 (228, 230). This value 

is an estimation of the total number of surface lattice sites present on the alumina (100), 

(111) and (110) planes, assuming a defect spinel structure. It has also been reported that 

the maximum uptake of K+ on alumina through deprotonation of surface hydroxyl groups 

to be 13 K+ nm-2 (228, 229). Based on these theoretical values, the maximum uptake of K 

in our system is 3.56 mmol, which corresponds to 42% of the total K content in the catalyst. 

Figure 3.2 shows the Raman spectra for the K promoted Ru catalyst (red trace) compared 

to that of the 12%K on alumina (black trace). There are few reports indicating the Raman 

vibrations for the KAl(OH)2CO3 compound, however Raman shifts above 700 cm-1 have 

been reported, indicating that scattering from the K-Al bond occurs at 1097 cm-1 and 728 
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cm-1, which are indicated in both Raman spectra, further indicating that the 4,12 RuK 

catalyst contains the K-Al compound when Ru is added to the catalyst during synthesis. 

The functionalization of the support with K gives insight in how such high loadings of 

promoter are not detrimental to the catalyst activity. Typically, large loadings of promoter 

are detrimental to activity, because it will begin to cover or block the active metal sites. 

Instead, functionalizing the support surface with K actually enhances the basicity 

of the support, which will further enhance ammonia decomposition activity (75, 124, 231, 

234–236). To the best of our knowledge, using a promoter to enhance the basicity of the 

Figure 3.1. XRD pattern of 12 wt% K supported on ɣ- Al2O3. The circles indicate 

reflections corresponding to KAl(OH)2CO3 
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support has not been investigated in this manner previously. It would be of interest to 

further explore the use of other alkali or alkaline earth metals deposited onto alumina in 

order to enhance the basicity of the catalyst. However, this study is outside the scope of 

this work.  

3.3 Investigation of Hollandite Formation 

Figure 3. shows the SEM and TEM images of two different catalysts, a baseline 4 

wt% Ru supported on γ-Al2O3 catalyst (a, b) and a 4 wt% Ru promoted with 12 wt% K 

Figure 3.2. Raman Spectra of (top) 4,12 RuK/Al2O3 and (bottom) 12K/Al2O3. 
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catalyst (4,12 RuK) (c,d). These catalysts were synthesized using the incipient wetness 

impregnation technique. It is quite clear to see that with the addition of K, the catalyst 

morphology dramatically changes. While the 4 Ru catalyst exhibits large nanoparticles that 

can be indexed to RuO2, the 4,12 RuK catalyst displays nanorod structures that have been 

previously been determined to be K-Ru hollandite (KRu4O8). The synthesis of this structure 

through impregnation techniques has not previously been investigated. Therefore, this 

section is dedicated to exploring under what conditions the hollandite structure can form 

in both wet and dry impregnation.  

The apparent activation energy for the 4 Ru and 4,12 RuK catalyst were measured 

under differential conditions (2-12% conversion) under 100% NH3 and at a space velocity 

of 5,400 mL/hr/gcat. The Arrhenius plot for both the 4 Ru and 4,12 RuK catalysts is shown 

in Figure 3.. The 4 Ru catalyst had an apparent activation energy of 125.2 ± 8.9 kJ/mol, 

while the 4,12 RuK catalyst had an apparent activation energy of 65.7 ± 7.7 kJ/mol. Other 

Figure 3.3. Left panel: SEM images of (a) 4 Ru/Al2O3 and (b) 4,12 RuK/Al2O3. TEM 

images of (b) 4 Ru/Al2O3 and (d) 4,12 RuK /Al2O3. Right panel: corresponding XRD 

patterns of (e) 4 RuK/Al2O3 and (f) 4,12 Ru/Al2O3. 
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apparent activation energy for Ru based catalysts have been reported within the range of 

87.9 – 155 kJ/mol (82, 237–239). The decrease in the apparent activation energy with the 

addition of K suggests that K electronically modifies the Ru active sites.  

3.3.1 Effect of Precursors on Catalyst Composition and Activity 

Different precursors were chosen in order to determine which K and Ru precursors 

would result in hollandite formation following the incipient wetness impregnation method. 

Specifically, two Ru precursors, ruthenium acetylacetonate (Ru(acac)3) and ruthenium 

chloride (RuCl3) and three K precursors, potassium acetate (KCH3COO), potassium 

Figure 3.4. Arrhenius plot for 4 Ru (filled diamonds) and 4,12 RuK (open diamonds). 

Reaction conditions: 100% NH3, 5,400 mL/hr/gcat and atmospheric pressure. 

Measurements were conducted under differential conditions. 
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hydroxide (KOH) and potassium nitrate (KNO3) were chosen and each combination of the 

six different precursors were investigated through XRD for phase identification and were 

also subjected to activity measurements. Due to the complexity and polycrystallinity of the 

patterns, phase identification was primarily determined using the major phases for the 

variety of components in each catalyst. When necessary, the minor reflections at higher 

2Theta values were used to conclusively determine phases. Highly crystalline KCl is seen 

in each pattern synthesized using RuCl3 as the Ru precursor, as indicated by reflections at 

28.33°, 40.49°, 50.14°, 58.6° and 66.36° (54). Additionally, the broad reflections located 

at roughly 46.1° and 67.3° are from the amorphous alumina support. The major reflections 

Figure 3.5 XRD patterns of 4,12 RuK catalysts synthesized with (blue trace) RuCl3, 

KCH3COO, (red trace) RuCl3, KOH and (black trace) RuCl3, KNO3 

 



www.manaraa.com

66 

for KRu4O8 hollandite occur at 12.58° (110), 17.81° (200), and 35.15° (121) ) (54, 118, 

126, 200, 240). These reflections are exhibited in the RuCl3, KCH3COO catalyst as well as 

the RuCl3, KOH sample. Additionally, these two catalysts contain a secondary phase 

KRuO4, which exhibits major reflections at 17.18° (011), 26.28° (013) and 31.84° (020). 

Neither KRuO4 nor hollandite appear in the RuCl3, KNO3 XRD pattern. Surprisingly, only 

reflections corresponding to RuO2 are present in the RuCl3, KOH pattern, indicated at 

28.13°, 34.93°, 54.15°, 57.83° and 59.28°(241, 242). 

Very broad reflections appear in the RuCl3, KNO3 at 28.0° and 35.1° which may 

indicate highly dispersed RuO2 nanoparticles. While Pyrz et al.(118) reported the formation 

of Ru hollandite using KNO3 and RuCl3 precursors, these results were not able to be 

reproduced here. Instead, reflections at 18.9°, 23.4°, 29.4°, 32.33°, 33.06°, 34.04°, and 

41.8° appear due to KNO3. Therefore, on the basis of XRD analysis, we concluded that Ru 

type hollandite can be formed using both KCH3COO and KOH as precursors under the 

synthesis conditions studied here. Figure 3.6 shows the XRD patterns for the three catalysts 

synthesized using Ru(acac)3 with KCH3COO, KOH or KNO3. As with the RuCl3, KNO3 

catalyst, the Ru(acac)3, KNO3 catalyst indexes to KNO3 but does not contain broad 

reflections corresponding to RuO2. Catalysts containing KOH and KCH3COO both contain 

KRuO4 and also exhibit peak broadening in the range of 50.5° to 57.1°. This may be due  

to highly crystalline RuO2, however the main reflections at 28.1 and 35.0° are not present 

in either pattern. No catalyst exhibited the major reflections related to hollandite while 

using the Ru(acac)3 precursor.  

The morphological properties of each of the six catalysts was determined using 

SEM and are shown in Figure 3.7. The top figures (a), (b), and (c) correspond to catalysts 
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made with RuCl3, while the bottom figures (d), (e), and (f) correspond to catalysts made 

with Ru(acac)3. For catalyst containing Ru type hollandite (RuCl3, KCH3COO and RuCl3, 

KOH), we expect to see nanowhisker type structures, while those containing KRuO4 

exhibit wispy, sheet like structures instead. Figure 3.7a and Figure 3.7b shows the SEM 

images for catalysts synthesized with RuCl3, KCH3COO, and RuCl3, KOH respectively. 

Both images show the nanowhisker structure indicative of hollandite, while Figure 3.7c 

(RuCl3, KNO3) does not indicate any KRu4O8 or KRuO4 structures as confirmed by the 

XRD. The small white spheres seen in the image are related to the morphology of the 

support and are not due to Ru nanoparticles. This has been confirmed by SEM images of 

the bare ɣ-Al2O3 support. As for the Ru(acac)3 catalysts, flat nanoneedles are seen in 

Figure 3.6 XRD patterns of 4,12 RuK catalysts synthesized with (blue trace) Ru(acac)3, 

KCH3COO, (red trace) Ru(acac)3, KOH and (black trace) Ru(acac)3, KNO3. 
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abundance in Figure 3.7d, and much more sparingly in Figure 3.7e. Interestingly, Figure 

3.7f (Ru(acac)3, KNO3) also shows an abundance of nanoneedles (albeit wider in diameter 

compared to Figure 3.7d), even though no crystalline Ru phase could be determined from 

the XRD pattern. Therefore, these structures may correspond to KNO3.  

Finally, these six catalysts were tested for their ammonia decomposition activity 

under 10% NH3 and at a space velocity of 45,300 mL/hr/gcat.. The NH3 conversion from 

250° to 400°C is shown in Figure 3.. The most active catalyst at all temperatures was the 

Ru(acac)3, KNO3 which obtained 97% conversion at 400°C. The high activity of this 

catalyst may be due to the formation of highly dispersed Ru particles, such that could not 

be observed via XRD. Other studies have shown that using Ru(acac)3 as a precursor can 

increase the Ru dispersion by 10% and enhance activity (123) which is most likely due to 

the size of the precursor ligand, which would create highly dispersed Ru nanoparticles due 

Figure 3.7. SEM images of 4,12 RuK supported on ɣ-Al2O3 made with (a) RuCl3, 

KCH3COO, (b) RuCl3, KOH, (c) RuCl3, KNO3, (d) Ru(acac)3, KCH3COO, (e) Ru(acac)3, 

KOH, and (f) Ru(acac)3, KNO3. 
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to the steric hindrance of the large ligands. The next most active catalyst was also 

synthesized using Ru(acac)3 and KOH, while the least active catalyst was made with 

Ru(acac)3 and KCH3COO. A different trend was observed with the RuCl3 based catalysts. 

The catalysts containing hollandite (RuCl3, KOH and RuCl3, KCH3COO) showed roughly 

similar performance at all temperatures, and ultimately obtaining 77% and 78% 

conversion, respectively. The RuCl3, KNO3 catalyst however showed the poorest activity 

of the RuCl3 catalysts.  Ultimately, we see here that the effect of the precursor will greatly 

influence the activity depending on which Ru precursor is used. Insight into why this may 

be the case is beyond the scope of this study. Here, we are further interested in studying 

Figure 3.8. NH3 conversion of various 4,12 RuK catalysts synthesized with different 

precursors. Reaction conditions: 10%NH3/Ar, 45,300 mL/hr/gcat and atmospheric 

pressure. 
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the precursors that are able to form hollandite, and that are also inexpensive. The high cost 

of the Ru(acac)3 precursor limits its practical application and thus RuCl3 will be continued 

to be used in combination with KCH3COO precursor herein.  

3.3.2 Influence of Synthesis Method 

Three different synthesis methods were investigated for hollandite formation. 

Hollandites are typically synthesized via molten salt reactions, solid state reaction, flux 

method or through hydrothermal synthesis methods. Additionally, there is only a single 

report of hollandite synthesized for support catalysis. Typically, hollandite structures are 

utilized for various oxidation reactions but are not supported (195, 201, 206, 243, 244). 

Therefore, we further investigated under what conditions the hollandite structure could 

form with supported catalyst synthesis methods. These include wet impregnation method 

(WI), incipient wet impregnation (IWI) and strong electrostatic adsorption (SEA). The 

methods for each of these synthesis procedures can be found in Chapter 2.2. After 

synthesis, XRD patterns of each of the three catalysts made with the three different 

synthesis methods were collected and are shown in Figure 3.. We see with the incipient 

wet and wet impregnation methods, we are able to form the KRu4O8 hollandite phase, but 

is not the case with the SEA synthesis method. The SEA synthesis catalyst instead exhibits 

a strong KNO3 reflection at 28.02°. This indicates that the reduction of the precursor 

ligands was not complete during the synthesis method.  

The primary difference between the SEA synthesis method with the dry and wet 

impregnation method is the fact that the two precursors are deposited at two separate times 

and not at the same time, as with the dry and wet impregnation methods. This opens up a 
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variety of questions that will be explored in later sections. Primarily, we are interested in 

determining whether or not sequential impregnation can also result in hollandite formation, 

as is seen with the co-impregnation synthesis used with the incipient wet and wet 

impregnation methods here. Additionally, we want to further understand of certain 

parameters specific to each the dry and wet impregnation influence the formation of the 

hollandite structure and will be the focus of the rest of this section.   
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Figure 3.9. XRD patterns for the three different synthesis methods of 4,12 RuK. From top 

to bottom: incipient wetness impregnation (IWI), strong electrostatic adsorption (SEA) 

and wet impregnation (WI). 
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3.3.3 Effect of Dilution Volume  

The effect of the metal concentration impregnated during each aliquot of the 

incipient wetness impregnation method was investigated to determine if this variable 

influences the active metal phase formation or the ammonia decomposition activity. As the 

solution volume increases, the number of impregnations increases, and the amount of metal 

deposited per impregnation will decrease. This may help enhance the dispersion of the 

active metal or limit the formation of hollandite. The volume of the impregnation solution 

was varied from 5 mL, 6 mL, 8 mL, 12 mL and 20 mL, for a catalyst containing 4 wt% Ru 

and 12 wt% K using RuCl3 and KCH3COO precursors. Table 3.1 shows the amount of each 

metal contained within one aliquot of solution, and the total number of impregnations 

performed for each catalyst synthesis. The volume for one aliquot of solution (one 

impregnation) is determined by the pore volume of the support used. Figure 3. shows the 

XRD patterns for the five different catalysts. It is obvious that the solution volume 

influenced the formation and relative amounts of KRuO4, and Ru based hollandite KRu4O8. 

This is highlighted in the insert, which shows that the KRu4O8 (200) plane increases with 

increasing solution volume in relation to the KRuO4 (011) plane, and then disappears at 

the highest solution volume of 20 mL. The average crystallite size for KRuO4 and KRu4O8 

was calculated for each of the XRD patterns using Scherrer’s equation given in Equation 

2.7. 

The FWHM was determined by fitting each reflection to a pseudo-Voigt profile 

using Fityk peak fitting software. The average crystallite size and the ratio of the FWHM 

of KRuO4 (001) to KRu4O8 (200) are given in Table 3.. Interestingly, the largest crystallite 

size of 34.38 nm was observed in the 20 mL catalyst, which also had the lowest  
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concentration of metal per impregnation. This suggests that after evaporating the water out 

of the pores of the support, the metals become mobile and agglomerate during the 

subsequent impregnation after water is reintroduced into the system. Alternatively, large 

particles may form from Oswalt ripening during the calcine process. The smallest 

crystallite size for both KRuO4 (28.50 nm) and KRu4O8 (18.09 nm) was observed in the 6 

mL solution volume catalyst. The relative ratio of the FWHM of the two Ru species gives 

us insight into the relative composition of each in relation to each other. The 6 mL sample 

also exhibited the lowest ratio, indicating more KRu4O8 present than KRuO4, while the 

largest ratio was seen in the 5 mL solution volume sample. There did not seem to be a 

direct correlation between either particle size or Ru species formation to the dilution 

volume, although it heavily influenced the presence of each. However, due to the 

anisotropic nature of these particles, averaging the various planes may not result in useful 

crystallite information. Instead, the ratio of the FWHM of the KRu4O8 (110) to the (200) 

plane shows that as the solution volume increased, the ratio of the two planes decreased 

until the hollandite was no longer formed. XRD can only provide information on the 

various crystallites that are present within the hollandite particles and does not give us 

Table 3.1. Average crystallite size for various 4,12 RuK catalysts synthesized with 

different impregnation volumes 
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insight into the variation in the hollandite morphology, and how the aspect ratio changes 

as a function of solution volume. Further insight into the morphological changes of the Ru 

species can be observed in the SEM images shown in Figure 3.11. 

The K promoted catalysts are shown against a unpromoted 4 wt% Ru catalyst 

supported on ɣ-Al2O3 (4 Ru, Figure 3.11a). The aspect ratio of the nanowires (Figure 

3.11b-f) dramatically changes with increasing solution volume. At low solution volumes, 

the hollandite becomes thick and more rod like, and gradually takes on a nanowhisker 

morphology, becoming more pliable, longer, and thinner. At 20 mL (f), where only KRuO4 

forms, flat, short nanorods are present. The polydispersity may be due to the lower rate of 

reactants mixing with higher dilution volume, or dependent on the concentration of K+ 

which could vary depending on the concentration of Al-OK and KCl that forms (217). It 

has also been shown that the crystallization process for Mn tunneled structures is highly 

dependent on the ratio of MnO4
- to Mn2+

 (245).  Figure 3.a shows the activity of the five 

different 4,12 RuK catalysts compared to an unpromoted 4 Ru catalyst. The activity 

measurements were conducted under 1% NH3 in balance Ar at a space velocity of 30,000 

Table 3.2. Average crystallite size for various 4,12 RuK catalysts synthesized with 

different impregnation volumes. 
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mL/hr/gcat and at atmospheric pressure. Figure 3.b shows the relationship between activity 

and the dilution volume for the five different 4,12 RuK catalysts. At all temperature, the 6 

mL catalyst showed the best performance, which coincided with the smallest average 

particle size and smallest ratio of KRuO4 to KRu4O8. At 300°C, the activity begins to 

decline at dilution volumes greater than 6 mL, indicating an optimal dilution volume for 

this system under study.  

 

Figure 3.10. XRD patterns for the 4,12 RuK catalysts synthesized with different 

solution volumes from top to bottom: 20 mL, 12 mL, 8 mL, 6 mL, and 5 mL. The insert 

shows the 2 Theta values from 10 – 20 deg to highlight the relative intensity of KRuO4 

and KRu4O8. 
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3.3.4 Effect of Impregnation Order 

During the co-impregnation synthesis method, the active metal Ru and promoter K 

are typically impregnated together. In order to determine if a synergistic effect occurs from 

mixing of the two components during synthesis, we conducted sequential impregnation of 

K followed by Ru and sequential impregnation of Ru followed by K onto ɣ-Al2O3. For 

sequential impregnation, either Ru or K only was first impregnated onto ɣ-Al2O3 following 

the synthesis procedure outlined in Chapter 2.2. After the calcine step, the second metal 

was then impregnated onto the calcined support and was then again dried at 200°C for 2 

hours, and subsequently calcined in air at 550°C for 3 hours. The nomenclature for these 

two catalysts will include brackets to indicate which metal was impregnated first. For 

example, 4,12 (Ru), K indicates that Ru was first impregnated, calcined, and then 

impregnated with K and calcined again. The effect of impregnation order on catalyst 

Figure 3.11. SEM images of 4,12 RuK catalysts compared to (a) unpromoted 4 wt% Ru. 

Synthesized with (b) 5 mL, (c) 6 mL, (d) 8 mL, (e) 12 mL or (f) 20 mL of solution during 

the incipient wetness impregnation synthesis. 



www.manaraa.com

77 

morphology was investigated using SEM and XRD. Figure 3.a shows the XRD patterns 

for 4,12 (Ru)K (red trace) and 4,12 Ru(K) (black trace) compared to the typical co-

impregnated 4,12 RuK catalyst (blue trace). The 4,12 (Ru)K catalyst showed reflections 

corresponding to KRu4O8 as well as KRuO4 and RuO2. Interestingly, the relative intensity 

of the RuO2 reflections is much larger than that of KCl, which is typically the most intense 

and sharp reflection exhibited in the XRD patterns. Interestingly, the XRD pattern for 4,12 

Ru(K) shows that no KCl formed during the synthesis, even though RuCl3 was used as the 

Ru precursor. This is highlighted in Figure 3.b, where the tailing on the left side of the KCl 

(110) peak in the 4,12 RuK catalyst may be from very small, highly dispersed RuO2 

nanoparticles, while the 4,12 Ru(K) catalyst shows no indication of KCl formation, but 

also shows highly dispersed RuO2 in relation to the 4,12 (Ru)K catalyst. Additionally, the 

catalysts synthesized from sequential impregnation show more prominent reflections from 

Figure 3.12.(a) Activity of the 4,12 RuK catalysts synthesized with different dilution 

volumes, compared to unpromoted 4 wt% Ru. Reaction conditions: 1% NH3/Ar, 30,000 

mL/hr/gcat and atmospheric pressure. (b) Ammonia conversion as a function of catalyst 

dilution volume at 300°C and identical reaction conditions. 
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the Al-OK species discussed in Chapter 3.2. The intensity of these peaks is overshadowed 

by the formation of KCl and KRu4O8 and KRuO4 in the co-impregnated catalyst.  

Varying the impregnation method gives us insight into how the hollandite may form 

during the impregnation synthesis method. In typical hollandite hydrothermal synthesis for 

KMn4O8, it has been shown that a layered precursor phase is first formed that transforms 

to KMn4O8 or in some cases different polymorphs of MnO2 (218, 220, 246, 247). Due to 

the chain like nature of the precursor RuCl3, this may be a feasible mechanism of formation 

for Ru based hollandite synthesized through incipient wetness impregnation. RuCl3 will be 

partially hydrolyzed in water, and the negatively charged ligands could form an ion pair 

with K+ in solution, forming the basis for a layered Ru-K compound. This would suggest 

that the support does not provide nucleation sites for the formation of hollandite.  However, 

the formation of hollandite by sequential impregnation of Ru followed by K, suggests that 

this may not be the case. Gao et al. (218) showed the structural evolution of MnO2 materials 

prepared at 140°C at different reaction times. They observed that spherical particles first 

Figure 3.13. (a) XRD patterns of 4,12 RuK catalysts synthesized by sequential 

impregnation compared to co-impregnation method (blue trace) and (b) enlargement of 

the XRD patterns to highlight the KCl (110) reflection. 
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formed and grew in size with increasing reaction time. Over time, short rod-like structures 

began to protrude from the surface of the spheres which grew in size with increasing 

reaction time, to finally transform from ɣ- (MnOOH) to β-MnO2 (1x1 tunnel). Figure 3. 

shows the SEM images of the 4,12 Ru(K) (Figure 3.a) and 4,12 (Ru)K catalysts (Figure 

3.b), where a similar phenomenon was seen when Ru was first impregnated onto the 

support followed by K. RuO2 nanoparticles can act as nucleation sites for the formation of 

hollandite, or further react with the addition of K to form hollandite and KRuO4.  

3.3.5 Effect of Evaporation Temperature and Calcine Duration 

Next, we determined whether or not the temperature at which the solution was 

allowed to evaporate as well as the duration of the calcine treatment had any effect on the 

catalyst activity, morphology, Ru species formation and average crystallite size. D’Addio 

(126) studied the effect of calcine temperature and time on ammonia decomposition 

activity for 4,12 RuK catalysts, and found that 550°C was an optimal calcine temperature 

that resulted in the highest ammonia decomposition activity, of 350°C, 550°C and 750°C. 

Therefore, the calcine temperature was kept constant in all cases at 550°C. However, the 

study did not further investigate which Ru phases were present at each calcine temperature 

or time. In order to study this, 4,12 RuK catalysts were synthesized using the wet 

impregnation synthesis method and allowed to evaporate at either 60°C, 90°C, 120°C and 

150°C. Each sample individual sample was then separated into four crucibles, and each 

was either heated under air to 550°C for either 0 hr (no calcine treatment), 1 hr, 3 hr or 5 

hr. Each catalyst was first heated to 200°C and held for 2 hours before being heated at 
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550°C for the aforementioned times. Each sample was then cooled to room temperature 

and XRD was performed on each sample as well as ammonia decomposition activity 

measurements.   

The XRD patterns for all 12 catalysts are shown in Figure 3.. From this figure it is 

clear that the formation of hollandite only occurs only with specific environmental factors. 

Only under mild evaporation temperatures of 60°C and 90°C, was the hollandite structure 

KRu4O8 able to be produced. Calcining these catalysts for up to five hours did not result in 

the degradation of the hollandite. In all cases KRuO4 is present. This indicates that KRuO4 

is thermodynamically favorable phase under all conditions studied. Additionally, prior 

synthesis methods for KRuO4 formation have reported that the compound can be easily 

Figure 3.14. SEM images of (a,b) 4,12 Ru(K) and (c,d) 4,12 (Ru)K 
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prepared from [Ru(OH)2O3]
2- in the presence of chlorine in basic solution (248). The Ru 

hydroxy complex can be easily formed from RuCl3 dissolved in water (249, 250) which 

would produce Cl- anions, and the KCH3COO precursor acts as the base in this specific 

synthesis method. In addition, KCl is easily formed, and is present both before and after 

the calcine procedure. Next, the activity of each of the catalysts was tested in 10% NH3/Ar 

and 30,000 mL/hr/gcat for their ammonia decomposition activity. The purpose of this 

measurement was to determine whether or not the formation of some Ru species and not 

others heavily influenced the reactivity. The catalysts were first reduced under 10% H2/N2 

for one hour at 450°C and then allowed to cool to 250°C under inert before activity 

measurements. The results are shown in Figure 3. from 250°C to 400°C (left) followed by 

a contour plot showing the effect of both the calcine duration and the evaporation 

temperature on activity at 300°C. The legend uses the nomenclature where the first number 

indicates the evaporation temperature, and second number indicates the calcine duration. 

Figure 3.15. XRD patterns of (left) catalysts calcined for 1 hr, (middle) catalysts calcined 

for 3 hr, and (right) catalysts calcined for 5 hours. The temperature listed refers to the 

evaporation temperature during the wet impregnation synthesis. 
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The contour plot showcasing activity at 300°C was chosen due to the largest variation in 

activity exhibited by the catalysts, and because we are interested in optimizing a catalyst 

for low temperature ammonia decomposition activity. Here we see that the highest activity 

was exhibited by the catalyst that was synthesized at 90°C and calcined at 1 and 5 hours.  

Both catalysts contained a mixture of KRuO4 and KRu4O8. The other catalyst 

containing KRu4O8 was synthesized at 60°C and was in the highest relative abundance at 

1 and 3 hours, and the lowest abundance with a 5 hour calcine duration. The contour plot 

shows that the next highest activity catalysts were made at 60°C with calcine durations of 

1 and 5 hours. Interestingly, there seems to be the poorest activity exhibited by the catalyst 

synthesized at 120°C and at 3 hours, which contained RuO2 and KRuO4 and further 

increases in the evaporation temperature above 90°C seemed to result in a catalyst with 

poorer activity regardless of the calcine duration. Additionally, the uncalcined catalysts 

Figure 3.16. (Left) Activity of the 4,12 RuK catalysts synthesized using the wet 

impregnation technique where the evaporation temperature and calcine duration were 

varied. The legend indicates first the evaporation temperature of each catalysts (°C) 

followed by the calcine duration (hr). (Right) Contour plot showing the relationship 

between evaporation temperature, calcine duration and ammonia decomposition activity 

at 300°C. The legend indicates the NH3 conversion (%) at 300°C. Reaction conditions: 

10%NH3/Ar, 30,000 mL/hr/gcat and atmospheric pressure. 
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(Figure 3., 60-0, 90-0 and 150-0) were tested to determine if the calcine treatment was even 

necessary, and it does seem that calcining to produce the oxide phases of Ru is indeed and 

unsurprisingly necessary for high activity catalysts. Interestingly we do see that the catalyst 

evaporated at 150°C with 0 hr calcine time resulted in much higher activity than the other 

two catalyst with no calcine time. This may be due to the fact that the precursor Ru phases 

that will produce the RuO2 and KRuO4 phases are more easily reduced in the highly 

reducing atmosphere of NH3 than the catalysts evaporated at 90°C and 120°C.  

3.4 Influence of K Loading 

While Pyrz et al. (118) discussed the effect of large loadings K on the 

morphological changes of the hollandite rods as well their implications to ammonia 

decomposition activity, there was little work involving the use of K loadings below 12%. 

Normally promoter loadings are in the range of ppm to levels to roughly 3% or 5% of the 

total weight of the catalyst. With higher loadings of promoter with respect to the active 

metal component, there is a risk of covering the surface of the active metal with the 

promoter, and thus lowering the activity by blocking the active sites. This has been 

exhibited in Cs promoted Ru decomposition catalysts where the Cs/Ru ratio was varied 

from 0 to 5, and the activity increased up until Cs/Ru = 2, and then further decreased with 

increasing Cs/Ru ratios (235). Therefore, the high loading of 12% K is relatively unique, 

as this a very high loading of promoter in relation to what is normally studied within the 

literature. Typically, promoters may be structural promoters, in that they increase the 

number of active sites present, or may be electronic promoters, in which the number of 

active sites stays relatively the same, but their intrinsic activity is increased. As mentioned 

in Chapter 3.2, K may act to promote the reaction may enhancing the basicity of the support 
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in addition to electronically modifying the Ru active sites (as seen by the decrease in the 

apparent activation energy given in Figure 2.17).  

Therefore, we did a systematic study of varying the K from 0.5% to 15% for a 1% 

Ru and a 4% Ru catalyst supported on γ-Al2O3. Figure 3.17 shows the ammonia 

decomposition activity of the 12 catalysts studied. The six different K loadings studied 

were 0.5%, 1%, 3%, 6%, 12% and 15 % each at either 1% Ru loading or 4% Ru loading. 

Two Ru loadings were chosen in order to see if the optimal K/Ru ratio varied based on the 

amount of Ru for the reasons mentioned earlier. Ultimately, we would expect to see that 

this ratio would be a function of the Ru loading, as the loading of Ru will affect the 

crystallite size and the dispersion of the metal. Thus, lower loadings of Ru may be more 

easily covered with higher loadings of K. The catalysts were run under 10%NH3, with a 

space velocity of 30,000 mL/hr/gcat and at atmospheric pressure from 250°C to 450°C. The 

filled symbols referred to the 4% Ru catalysts and the open symbols are the activity of the 

1% Ru catalysts.  

The catalysts containing 1% Ru generally were less active than the 4% Ru catalyst 

on an activity basis. Figure 3.18 shows the activity as a function of the K to Ru ratio for (a) 

catalysts containing 1% Ru and (b) catalysts containing 4% Ru. Interestingly we see that 

for both loadings of Ru, the most optimal loading of K is 12% as previously confirmed by 

Pyrz et al. (118). The most active catalyst was the 4,12 RuK catalyst composition, and the 

1,12 RuK catalyst was the first most active catalyst. Interestingly, we find that the optimal 

K loading is independent on the Ru loading. This suggests that the modification of support 

with the K is highly beneficial to the ammonia decomposition reactivity. Pyrz et al. (118). 

determined that the next optimal K loading was 18% for a 4% Ru catalyst, while we found 
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that 6% promotion resulted in higher activity than with 15% K. The larger loadings of K 

may act to block the Ru active sites or may cause bulk crystallization of K2CO3 or other K 

carbonate species as previously mentioned. If the hydroxyl groups located on the surface 

of the Al2O3 can participate in ion exchange with the K cations in solution, then by utilizing 

the same support, the same interaction and utilization of K will occur regardless of the Ru 

loading. This will help mitigate the blocking of active sites. Theoretically, the [OH]- 

concentration on γ-Al2O3 has been calculated to 11 OH/nm2 (229, 230) and the theoretical 

maximum K+ uptake has been calculated to be 13 K+/nm2 (228). The support used here 

had a measured BET surface area of 192 ± 8 m2/g. Therefore, the theoretical maximum 

Figure 3.17. Ammonia decomposition activity of catalysts with various potassium 

loadings from 0.5% to 15 % in combination with either 1%Ru (1,X RuK) and 4% Ru 

(4,X RuK) supported on γ-Al2O3, where X = K loading. Reaction conditions: 10% 

NH3/Ar, 30,000 mL/hr/gcat and atmospheric pressure. 
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uptake of K+ during our synthesis is 3.56 mmol of K+, which is roughly 58% of the total 

K+ present in the synthesis. Because the K+ can also readily interact with the Cl- ions 

present from the Ru precursor, large agglomerations of crystalline K species are most likely 

not deposited onto the Al2O3 as seen with other K modified Al2O3 reports at higher K 

loadings. If all Cl- ions were utilized in the form KCl, that would result in an additional 

2.37 mmol of K utilized, which accounts of 39% of the total K ions in solution. Therefore, 

the amount of K cations that are present to deposit near Ru is not nearly as high as the 

actual loading of K, as the purpose of the promotional effect of K is multifaceted and 

encompasses may different aspects.  

3.5 Working State of the Catalyst 

While we have a better understanding under what conditions the hollandite 

structure will form, we want to understand the role of the structure during the ammonia 

decomposition reaction, and more importantly, what the working of the state of the catalyst 

looks like and what the active site is. In order to answer these questions, a 4,12 RuK catalyst 

      

Figure 3.18. K/Ru ratio as a function of ammonia decomposition for catalysts containing 

(a) 1%Ru and (b) 4 % Ru supported on γ-Al2O3. Reaction conditions: 10% NH3/Ar, 

30,000 mL/hr/gcat and atmospheric pressure. 
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was synthesized and then characterization was performed on the fresh catalyst, the catalyst 

have it has been reduced at 450°C in 10%H2/Ar for 1 hr to understand the working state 

before exposure to ammonia, and after exposure to ammonia (spent). Figure 3.3 shows 

SEM images of the three different states of the catalyst: fresh, reduced and spent. In the 

fresh catalyst we see nanowhisker formation indicative of hollandite formation. The fresh 

image also shown highly crystalline block structure which have been identified as KCl 

from EDX mapping (not shown). 

 From the fresh to the reduced images, very small, fragmented nanowires are now 

present. At first glance, they are not present at the 3µm scale, but require much larger 

magnification to see. The wires are segmented and much more wormlike in nature. 

Additionally, in these reduced images we cotton ball like structures on the surface of the 

support. These have been separately identified to be apart of the support, as they are also 

present in SEM images of just the bare γ-Al2O3 without any modification. In order to 

determine the nature of these segmentations, elemental analysis was performed. The results 

Figure 3.3. SEM images of 4,12 RuK catalysts (left) fresh, (middle) reduced and (right) 

spent at two different scales (top) 3 µm and (bottom) 1 µm. 
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of the mapping are shown in Figure 3. following the characteristic X-rays of Al, O, Cl, K 

and Ru. The segments are composed primarily of Ru, which exhibits the most intense 

signal from the mapping, and interestingly the segments are also covered in Cl. 

Additionally we see that after the H2 reduction is K is littered all about the surface of the 

catalyst, which is to be expected as the K modifies the surface of the support as discussed 

previously. Lastly, we can determine from the mapping that the nanowire structure is not 

in an oxide phase, as the only O signal present is from that of the support.  

This provides some information on the working state of the catalyst already. After 

the H2 reduction, the well structure nanorods presumably decompose into Ru and Cl 

containing nano worms. After exposure to ammonia, the worm shapes further break apart 

into small segments and clusters as seen in Figure 3.3 spent. The corresponding TEM 

images for the fresh, reduced and spent nanorods are shown in Figure 3. where two 

different scales are shown. The TEM images further highlight the structuring the nanorods 

in each of the three cases. The fresh nanorods exhibit for well-defined and straight ordering, 

while dendritic like branching and clear segmentation is exhibited in the reduced nanorods.  

Lastly the spent rods show much more agglomeration compared to the reduced 

rods, however the segmentation persists. This demonstrates that further that the 

segmentation is present after exposure to ammonia and the structural changes may be the 

reasoning for the enhanced activity of these structures.  In order to determine differences 

in the three different states, the average diameter of the nanorod in each of the three cases 

was determined by measuring the multiple nanorods via TEM for each sample. Figure 3. 

shows the distribution of rod diameter for the fresh, reduced and spent catalysts, where an 

average of 100 rods were counted for each case. Each histogram is then fitted with a 
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Gaussian curve to visualize the distribution of diameters. The average diameter decreases 

from the fresh to the reduced case from 28.0nm to 23.7 nm, and then stays relatively the 

same after exposure to ammonia with a diameter of 24.0 nm. This reduction in diameter 

suggests that the initial hollandite nanorods decompose during the reduction to produce 

metallic Ru rods. This would occur via migration of K+ out of the center of the tunnels. The 

diameter of the reduced state and that of the spent state suggests that the morphology of 

these segmented rods is highly stable during the reaction conditions since we do not see 

dramatic differences in the sizes.  The elemental mapping in Figure 3. does indeed suggest 

that the surface of the Al2O3 is littered with K+ after reduction.  

Figure 3. shows the XRD patterns for the three catalysts. It is obvious to see that 

the hollandite whose major reflections are initially present at 12.47° (110) and 17.73° 

(200), are no longer visible in the reduced and spent patterns. The same goes the KRuO4 

Figure 3.20. Elemental mapping of reduced 4,12 RuK catalyst. 
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reflections, which indicates that these structures are not the active sites during the ammonia 

decomposition reaction. After the catalysts are reduced, reflections belonging to highly 

crystalline KCl are still present, and reflections indicative of metallic. Ru appear at roughly 

42.38° (002) and 44.07° (002). This indicates that both species reduce to metallic Ru during 

the reduction pretreatment and that metallic Ru is the active phase during the ammonia 

reaction. Additionally, the dendritic nanorods have been shown to be composed to Ru, and 

thus are most likely where the reaction occurs. Additionally, the crystallite size of the Ru 

(002) and Ru (101) facet for the reduced and spent patterns were calculated using 

Scherrer’s equations. For the reduced catalyst, the Ru (002) facet was 16.2 nm, while that 

of the spent catalyst was 14.1 nm. The Ru (101) facet for the reduced catalyst was measured 

to be 15.1 nm, while that of the spent catalyst was 14.7 nm. 

Figure 3.21. TEM images of 4,12 RuK catalysts (left) fresh, (middle) reduced and (right) 

spent at two different scales (top) 200 nm and (bottom) 50 nm. 
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Figure 3.22. Nanorod diameter distribution for 4,12 RuK catalysts (bottom) fresh, 

(middle) reduced and (top) spent. Each distribution is fit with a Gaussian function. 
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The relatively similarity of the crystallites further suggests that these segmentations 

are stable during reaction, and that bulk restructuring of the Ru segments does not occur 

after the reaction was finished. Prior work in our group (127) has conducted further 

imaging on the spent Ru nanorods using dark fielding imaging and focusing the diffracted 

electrons from the Ru (002) and Ru (100) facets and have determined that the 

segmentations are composed of individual crystallite grains as shown in Figure 3.24. These 

segments are connected through grain boundaries, which were proposed to possibly contain 

a higher number of B5 sites, which may enhance the rate of reaction.  

3.6 Catalyst Reducibility  

While we now have a better understanding of the working state of the catalyst 

during the reaction, we want to better understand the metal oxide redox properties of the 

catalyst. H2-TPR is a technique that is useful in determining the correct reduction 

temperature for reaction pretreatments, to determine the mechanism of reduction of single 

metal catalysts, to understand the redox properties of reducible supports and the 

interactions between supports and active metals. Figure 3. shows the H2-TPR profiles of 

4% Ru/γ-Al2O3 (4 Ru, black trace) and of 4% Ru, 12%K/ γ-Al2O3 (4,12 RuK, red trace).  

A H2-TPR profile was also taken for bare γ-Al2O3¸ and no reduction peaks were 

exhibited (not shown). The 4 Ru catalyst exhibits three reduction events at 138°C, 165°C 

and at 194°C. The position of the reduction events can be influenced strongly by the 

particle size of the reducible metal oxide as well as the interaction between the support and 

the metal oxide. The low temperature peak at 138°C can be assigned to the reduction RuCl3 

(251) which indicates that the RuCl3 is not completely removed at the calcine temperature 
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of 550°C. The reduction of RuO2 nanoparticles can be assigned to the high temperature 

peak at 194°C (251, 252), where the reduction of RuO2 has been reported between 450K 

and 470K. The intermediate reduction temperature peak at 165°C may be due to the 

reduction Ru oxychloride. Interestingly, another variable that can change not just the redox 

properties, but other chemical and physical properties of a catalyst is the use of chlorine 

salt precursors, and the residual Cl that is leftover on the catalyst surface after the calcine.  

Figure 3.23. XRD patterns of 4,12 RuK catalysts (blue trace) fresh, (red trace) reduced 

and (black trace) spent. 
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Chlorine has been found to have both negative and positive aspects to catalytic activity 

depending on the reaction being studied (125, 253, 254) 

Chlorine has been found to increase the dispersion of the active metal particles, 

change the catalyst selectivity and activity and also can affect the rate of adsorption over 

different metal surfaces (121, 125, 255). As shown in Figure 3., the working state of the 

4,12 RuK catalyst is covered completely with residual chlorine. With the addition of K, the 

Figure 3.24. Top (a,b) TEM images of spent Ru nanorods and bottom (a,b) dark field 

imaging of the same area containing Ru nanowires. Aperture was placed over different 

bright spots to illuminate corresponding crystal grains. Adapted from ref (127). 
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H2-TPR profile becomes very different from that of the unpromoted 4 Ru catalyst. Two 

distinct regions appear in the 4,12 RuK profile. The first low temperature region consists 

of peaks located at 120°C, 144°C and 156°C. The second, high temperature region has a 

main reduction even occurring at ~345°C, with a peak shouldering the left side at ~287°C 

and a much broader shouldering on the right-hand side around 350°C and an even more 

broad and long reduction even at ~397°C. These high temperature reduction peaks are not 

indicative or RuO2 reduction or from surface or bulk reduction of hydroxyl groups from 

Al2O3. Indeed, the profile is further complicated by the fact the catalyst contains multiple 

Figure 3.25. H2-TPR profile of 4 Ru (black trace) and 4,12 RuK (red trace) supported on 

γ-Al2O3. 



www.manaraa.com

96 

mixed metal oxides. The reduction of KRuO4 and KRu4O8 have not previously been 

reported. In typical cases, the addition of a promoter does not change the structural 

arrangement of the metal oxide. Here, from the XRD analysis, we can clearly see that 

KRuO4 and KRu4O8 hollandite are two of the primary reductive metal oxides present in 

the 4,12 RuK catalyst. Additionally, very small RuO2 particles may be present that are 

either convoluted within other XRD reflections or are too small to be visible using XRD.  

The addition of promoters to a catalyst has the capability of changing the 

reducibility of the active metal when they are in close proximity to one another. Similar to 

strong metal support interactions, where the charge state of the metal is altered by 

interactions with the support, the charge state of the metal can also be altered by a promoter. 

This is typically one reason why promoters are highly electropositive or electronegative.  

Therefore, we expect to see major differences in the TPR profile with such high loading of 

K present in the catalyst. With the extreme broadening exhibited, it is highly probable that 

there are multiple reduction events occurring within one or both of the low and high 

temperature reduction areas. Some studies have shown that low loadings of K may not 

affect the reducibility of metals below 2% (256), but that higher loadings of K indeed 

completely change the TPR events and add to the complexity of the profile. External H2-

TPR measurements of KRuO4 purchased from Sigma-Aldrich were taken, and multiple 

reduction events between 50°C and 150°C were seen (not shown). The TPR profile for 

KRuO4 exhibited multiple peak maxima at 77°C, 124°C, 145°C and 167°C. In addition, 

we see with the 4Ru sample that the reduction of RuO2 also occurs within this temperature 

range. The identification of the high temperature reduction events was not straightforward.  
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The TPR profiles of K-Mn based hollandite show that the reduction of K-Mn 

hollandites occurs via the reduction of MnO6 octahedrons to Mn3O4, Mn2O3 and finally to 

MnO2 (220). However, the Ru3O4 and Ru2O3 oxidation state are extremely uncommon 

(248, 257) and therefore it is unlikely the reduction of K-Ru hollandite occurs through a 

similar mechanism. However, it is possible that Ru based hollandite reduces by 

transitioning through multiple oxidation states. From the H2-TPR the hollandite reduction 

event may occur at the high temperature reduction event between 287°C and 397°C, 

however further experimentation is needed in order to determine this. To begin, the H2-

TPR profile of 12K/Al2O3 should be probed in order to determine if the carbonates from 

the KAl(CO3)OH2 compound are responsible for the high temperature reduction peaks.  

In order to gain insight into the reduction mechanism of the catalyst, in-situ XRD 

was performed to follow the reduction of the hollandite KRu4O8 and KRuO4 complexes by 

monitoring the major phases of both complexes as a function of time. The measurements 

were taken while flowing a stream of 5%H2/Ar over the catalyst bed. The temperature of 

the catalyst bed was increased in 25°C increments from room temperature to 450°C, and 

the temperature was held constant while each measurement was being performed. Next, 

the catalyst was allowed to dwell for 30 minutes at 450°C, where another measurement 

was taken. Finally. the catalyst was allowed to cool under inert back to room temperature 

where a final scan was taken. The XRD patterns are shown in Figure 3.. The XRD 

measurements were taken at a scan rate of 2°/min from 10° to 60°. Additionally, each 

pattern contains a major reflection of α-Al2O3 at 25.8° which is from the corundum sample 

holder.  
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The major reflections for KRuO4 are present at 17.2°, 26.38° and 31.8°, while 

KRu4O8 reflections are present at 17.8°, 31.15° and 46.1°.  The major reflections at the 

smaller 2 Theta values are overshadowed by the highly crystalline KCl, and therefore are 

shown more clearly in Figure 3.27. Additionally, we can see here that the reduction of these 

two Ru compounds occurs at relatively low temperature. We see a decrease in the relative 

intensity of these major reflections, which then completely disappear by 175°C. The 

disappearance of these peaks is also accompanied by the formation of a new reflection 

located at roughly 44.4°, which can be clearly seen in Figure 3.27. This reflection can be 

Figure 3.26. in-situ XRD patterns for 4,12 RuK during H2 reduction in 5%H2/Ar from 

25°C to 450°C. After the last measurement at 450°C, the temperature was held for 30 

minutes and a second measurement was taken. The catalyst was then allowed to cool to 

room temperature under inert and the final measurement was taken (RT). 
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attributed to the metallic Ru (101) crystallite facet, and begins to appear at roughly 175°C. 

This peak continues to grow in intensity all the way up to 450°C, where it then remains 

relatively constant after holding the catalyst bed temperature at 450°C for 30 minutes. In 

order to quantify the changes in the Ru crystallites as a function of temperature, the FWHM 

was fit for the Ru (101) facet from 175°C to 450°C and the crystallite size was calculated 

using Scherrer’s equation. 

Figure 3.27. in-situ XRD patterns for 4,12 RuK during H2 reduction in 5%H2/Ar from 

25°C to 275°C highlighting the major reflections of KRuO4 and KRu4O8 and their 

disappearance from 10°- 30°. 
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Interestingly, we also see that the FWHM of the metallic Ru reflection changes with 

increasing temperature. This suggests a change in the crystallite size. In order to determine 

this, profile fitting was conducted in order to fit the FWHM of the metallic Ru reflection, 

which was then used to calculate the average crystallite size using Scherrer’s equation. 

Because of the peak convolution between γ-Al2O3 and metallic Ru, the γ-Al2O3 was also 

fit in order to properly determine the peak function for the metallic Ru. The alumina peak 

was first fit in a pattern where no metallic Ru was present, using a Split Pseudo Voigt 

function. An example of the fitting for the alumina peak is given in Figure 3.28, where the  

Figure 3.28. in-situ XRD patterns from 41° to 49° of 4,12 RuK under 5%H2/He, showing 

the growth of the Ru0 reflection as a function of temperature from 150°C to 450°C.  
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position of the Ru (101) facet is indicated on the left-hand side of the alumina peak. Shape 

factor 1 was set constant to 0.0216 and shape factor 2 was set constant to 0.077 for each 

fitting of the alumina peak at each temperature in order to ensure accurate fitting of the Ru 

(101) facet. Next the Gaussian contribution was fit for both sides of the alumina peak at 

each temperature from 175°C to 450°C. Afterwards, the metallic Ru peak was fit using a 

Pseudo Voigt function. The residual is shown in order to represent the error in the fitting, 

which was roughly 1 nm. The fitting for both the alumina and the metallic Ru peak from 

175°C to 450°C can be seen in Figure 3.29, where the light-yellow area corresponds to the 

alumina, and the orange area corresponds to the metallic Ru. Here we see in increase in the 

Figure 3.29. in-situ XRD pattern from 43° to 50° at 50°C, highlighting the fitting of the 

γ-Al2O3 peak before the appearance of the Ru (101) facet along with the residual of the 

fit. Profile fitting of the γ-Al2O3 peak was performed using a Split Voigt function.  
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FWHM as a function of temperature, indicating crystal growth is a function of the reduction 

temperature. The calculated crystal size and the FWHM for the metallic Ru (101) reflection 

from 175°C to 450°C is given in Figure 3. as a function the reduction temperature. The 

crystallite size increases from 7.4 nm at 175°C to 16.8 nm at 450°C. After holding for 30 

minutes at 450°C, the crystal size did not change much from 16.8 nm. After cooling to 

room temperature, the crystallite size decreased to roughly 15 nm.  

Lastly, this experiment shows us that the large reduction even that occurs in the 

4,12 RuK H2-TPR profile from roughly 250°C – 500°C is not due to the reduction of a 

metal oxide. We have shown through in-situ XRD that the Ru metal oxides all reduce below 

150°C, and thus the complex reduction peak in the H2-TPR from 75°C to 220°C is from 

Figure 3.30. Full Width Half Max (FWHM) and crystallite size (nm) of the Ru (101) as a 

function of reduction temperature. Reduced under 5%H2/He. 
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the reduction of KRuO4 and KRu4O8. Additionally, we were able to ascertain that the 

particle size of the resultant active site can be controlled through the reduction temperature 

of the catalyst. However further understanding of what is occurring between the 

temperature ranges of 125°C to 175°C, and from above 250°C needs to be further 

elucidated. To begin with this, we performed ex-situ SEM imaging of the reduced 4,12 

RuK catalyst at three different reduction temperatures, 250°C, 350°C and 450°C, each of 

which was subjected to a reduction in 10%H2/Ar. The images for the three reduction 

temperatures are shown in Figure 3.31. At a reduction temperature of 250°C, the support 

shows a sparce and homogenous covering of short nanorods. As the reduction temperature 

increases to 350°C, these short rods begin to agglomerate and form more a more dendritic 

covering over the support particle.  

Additionally, we see that the thickness of the rods has further increased. At the last 

temperature studied 450°C, the rods further agglomerate into more stalky and shorter 

nanorods. These images indicate that there are dramatic morphological differences in the 

active component of the catalyst as the reduction temperature changes. Even though the Ru 

mixed metal oxides are completely reduced by 250°C, the morphology of the metallic Ru 

species continues to change. In order to determine the consequence of these morphological 

changes, the activity of the 4,12 RuK catalyst at each of these reduction temperatures were 

determined. Figure 3.32 shows the ammonia decomposition activity of the catalyst reduced 

at 250°C, 350°C and 450°C. The catalysts were subjected to a flow of 100% NH3 and a 

space velocity of 16,200 mL/hr/gcat at atmospheric pressure. Interestingly, we see that the 

catalyst reduced at 250°C and at 350°C both exhibited very similar activities, while both 

having vary different crystallite sizes and morphologies, as indicated by the in-situ XRD 



www.manaraa.com

104 

measurements and ex-situ SEM images. At a reduction temperature of 450°C, the activity 

of the catalyst dramatically increases at all temperatures, while also exhibiting the largest 

crystallite size. Since the metal loading of the catalyst does not change for each of these 

activity measurements, the differences in activity must be due to more active sites being 

present after being reduced at 450°C. Additionally, in most particle size studies, the Ru 

particle size or crystallite size of interest is not studied above roughly 7 nm, while here we 

look at crystallite sizes between 9 and 17 nm. Further investigation into the working state 

of the catalyst at these three reduction temperatures should be done in order to determine 

how the nanorod diameter distribution changes, as well as H2 chemisorption in order to 

determine the number of active sites present to determine the TOF. 

Figure 3.31. SEM images of the 4,12 RuK catalyst reduced ex-situ in 10% H2/Ar at three 

different temperatures: 250°C, 350°C and 450°C.  
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3.7 Activity Comparison of Mixed Metal Ru Oxide Catalyst to Highly 

Dispersed Ru Nanoparticles Synthesized via SEA 

In order to make comparisons of our mixed metal oxide Ru based catalysts to the 

more idealized size and shape of Ru particles reported in the literature (1.8nm – 2.5nm), K 

promoted Ru catalysts were synthesized via SEA in collaboration with the Regalbuto 

group. The catalysts were synthesized using the same γ-Al2O3 support as those made 

through wet and dry impregnation methods. The SEA method allows us to control the 

Figure 3.32. Ammonia decomposition activity of the 4,12 RuK catalyst reduced at three 

different temperatures: 250°C, 350°C and 450°C. The legend indicates the reduction 

temperature in 10%H2/Ar, followed by the calculated Ru (101) crystallite size from the 

in-situ XRD measurements.  Reaction Conditions: 100%NH3, 16,200 mL/hr/gcat and 

atmospheric pressure. 
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particle size more efficiently, and thus in theory increase the number of edge sites present 

on the Ru particles, and in turn the number of highly active B5 ensembles present, as 

discussed in Chapter 1. The SEA catalyst was synthesized with the same nominal loading 

as the catalyst synthesized via incipient wetness impregnation (4%Ru and 12%K) so direct 

comparisons could be made in activity based on the morphology and particle size. 

 Figure 3.33 shows the XRD patterns for 4,12 RuK SEA catalyst after synthesis, 

and after exposure to ammonia. In the fresh pattern (black trace), reflections corresponding 

to Ru metal are not present, which indicate that the Ru is highly dispersed in the catalyst 

and have a particle size that is below the limit of detection through XRD (< 3nm). 

Additionally, the spent pattern does not shown signs of Ru reflections, which indicates that 

sintering did not occur of the Ru particles after exposure to ammonia and to high 

temperatures. Next, the activity of the SEA synthesized catalyst was tested and compared 

to that of the incipient wetness impregnation catalyst (IWI) under identical operating 

conditions. Figure 3.34 shows both the activity of both catalysts as a function of 

temperature, as well as the long-term stability of both catalysts at 450°C. The catalysts 

were tested in 100% NH3, at a space velocity of 5,400 mL/hr/gcat and at atmospheric 

pressure. Interestingly, we found that under these conditions, both catalysts exhibited very 

similar reactivity, and were found to be stable for 10 hours at 450°C. At 450°C, the IWI 

catalyst exhibited slightly higher activity than the SEA catalyst of 94.2% conversion, while 

the SEA catalyst exhibited 93.8% conversion. These values are roughly within error of 

each other. In order to try to ascertain differences in activity between the two catalysts, the 

space velocity of the reaction was tripled from 5,400 mL/hr/gcat to 16,200 mL/hr/gcat. Due 
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to the high reactivity of both catalysts, it may have been necessary to dramatically increase 

the space velocity to determine differences in the two catalysts.   

Figure 3.35 shows the activity of the SEA and IWI catalysts with the higher space 

velocity, and in 100% NH3 at atmospheric pressure. Here we see that with the increase in 

space velocity, there are dramatic differences in activity for the two catalysts. The SEA 

catalyst shows a dramatic decline in activity compared to the IWI catalyst. The IWI catalyst 

shows slightly lower activity at lower temperatures, but still maintains 94% conversion at 

450°C. For the SEA catalyst, the activity at 450°C drops to roughly 80%. This shows that 

Figure 3.33. XRD patterns of (black trace) fresh and (red trace) spent 4,12 RuK catalyst 

after exposure to ammonia. Catalyst was synthesized via SEA method.  
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our mixed metal oxides exhibiting large Ru particles, are more active than what is 

commonly referred to in the literature as the optimal Ru particle size for this reaction. 

However, to confirm these results H2 chemisorption should be performed on both catalysts 

in order to compare the TOF of the two catalysts.   

Lastly, to try to explain the differences in catalytic activity that is exhibited between 

the catalysts, the rate of reaction for each catalyst were fit to a simple power law model in 

order to determine the reaction order with respect to NH3 and H2. The reaction order with 

respect to N2 was not considered here because it has been previously shown in multiple 

studies that there is no dependence on the N2 partial pressure on the rate of reaction. Figure 

3.36 shows the logarithmic dependence of the partial pressure of hydrogen (top) and the 

Figure 3.34. (left) Activity of the 4,12 RuK SEA (black squares) compared to the 4,12 

RuK catalyst synthesized via incipient wetness impregnation (IWI) (red circles). 

Reaction conditions: 100%NH3, 5,400 mL/hr/gcat at atmospheric pressure and (right) long 

term stability of the 4,12 RuK SEA (black squares) and of the 4,12 RuK IWI (red circles) 

at 450°C over 10 hours. 
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partial pressure of ammonia (bottom) on the logarithmic rate of reaction. In order to 

determine the effect of the partial pressure of each gas on the rate of reaction, the inlet 

concentration of hydrogen and ammonia was varied between 10% and 30% with balance 

Ar, and the temperature and space velocity were held constant at 450°C and 5,400 

mL/hr/gcat respectively. Each catalyst was then fit with a linear regression and the R2 value 

shows the goodness of fit of the experimental data. Additionally, the rate of reaction was 

fit for a 4 Ru catalyst in order to make comparisons of our values to those of the literature. 

We found that for a 4% Ru catalyst, there was a reaction order of -0.55 with respect to 

Figure 3.35. Activity of the 4,12 RuK SEA (black squares) compared to the 4,12 RuK 

catalyst synthesized via incipient wetness impregnation (IWI) (red circles). Reaction 

conditions: 100%NH3, 16,200 mL/hr/gcat at atmospheric pressure  
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hydrogen, and 0.40 with respect to ammonia. These correlate to similar values within the 

literature, where a value -0.60 with respect to hydrogen and between 0.0 – 1.0 with respect 

to ammonia have been measured in the literature (82, 83, 258). The SEA 4,12 RuK catalyst 

exhibited a reaction order of -0.28 with respect to hydrogen, and 0.49 with respect to 

ammonia. The IWI 4,12 RuK catalyst exhibited a similar reaction order with respect to 

hydrogen of -0.26 but a much higher reaction order with respect to ammonia of 0.70. The 

slight increase in the negative dependence on the hydrogen partial pressure indicates that 

Figure 3.36. Reaction order determination for 4,12 RuK SEA (circles, red trace) and 4,12 

RuK IWI (squares, blue trace) with respect to H2 (top) and NH3 (bottom). Reaction 

conditions: 100% NH3, T= 450°C, 10-30% H2, 10 – 30% NH3 in balance Ar, 5,400 

mL/hr/gcat and atmospheric pressure.  
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the inhibitive effect of hydrogen is reduced on both catalysts in comparison to the 4 Ru 

catalyst. The dramatic differences in the dependence on the ammonia reaction order may 

indicate differences in the rate limiting step, and further experimentation should be done 

in order to elucidate the mechanistic differences.  

3.7 Conclusions 

This chapter investigated various synthesis methods and parameters that may 

influence the formation of hollandite for supported catalysts. Firstly, we discussed how the 

addition of K to γ-Al2O3 influences and chemically modifies the surface by ion exchanging 

with the surface hydroxyls and showed the formation of KAl(OH)2CO3 in a K/Al2O3 

catalyst. Nextly, we discussed how the addition of K influenced the catalyst compared to a 

4% catalyst through apparent activation energy required for ammonia decomposition as 

well as morphological differences and differences in crystalline phases present. The 

addition of K induced the formation of mixed metal oxides KRuO4 and KRu4O8 which 

took the form of nanowires and sheets in the SEM/TEM images. Additionally, the apparent 

activation energy decreased from 125.2 kJ/mol to 65.7 kJ/mol with the addition of 12% K.  

Next, we looked at which precursors were able to form the hollandite structure. 

These included RuCl3, Ru(acac)3, KNO3, KOH and KCH3COO. A total of six catalysts 

were synthesized and analyzed for their crystal structure, morphology and ammonia 

decomposition activity. We found that RuCl3 in combination with KOH and KCH3COO 

formed hollandite, but synthesis methods with KNO3 failed to produce the hollandite 

structure. When Ru(acac)3 was used, no combination of Ru(acac)3 with K precursors 

produced the hollandite structure. This suggests that the chainlike nature of RuCl3 is an 
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important factor in forming the tunnel like hollandite structure during impregnation 

synthesis methods. These catalysts were tested for their ammonia decomposition activity 

in 10% NH3/Ar at a space velocity of 45,300 mL/h/gcat and at atmospheric pressure. The 

best performing catalyst was the Ru(acac)3, KNO3 catalyst at all temperatures, followed by 

Ru(acac)3, KOH. The high activity of these catalysts may be attributed to the lack of Cl- 

anions present which has been known to be detrimental to activity. Three different 

impregnation methods were looked at to determine when hollandite will form. We 

determined that dry impregnation, incipiently wet impregnation were viable methods to 

form hollandite, but SEA was not able to produce the hollandite structure. 

Next, variables specific to both dry and incipiently wet impregnation were studied 

to further understand under what conditions hollandite can form in supported catalysts. 

Firstly, the effect of the volume of the solution used during incipient wet impregnation was 

investigated. The abundance of metal deposited per impregnation may have influenced the 

availability of Ru to interact with K and provided insight into the growth mechanism of 

hollandite. The number of impregnations was varied from 4 to 17 with a solution volume 

of 5 mL to 20 mL, respectively. XRD analysis showed that the dilution volume influenced 

the relative ratio of KRuO4 to KRu4O8, and that a maximum ratio was obtained with a 

solution volume of 5 mL, and that the aspect ratio of the hollandite varied with the solution 

volume. The most diluted impregnation did not form hollandite structure. These catalysts 

were then tested for ammonia decomposition activity and a catalyst synthesized with a 

solution volume of 6 mL showed the highest activity at 300°C, while the catalyst 

synthesized with 20 mL of solution volume had dramatically lower activity.  
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Next the effect of the impregnation order was studied to see if both K and Ru needed 

to be deposited onto the catalyst in tandem for the hollandite to form. Sequential 

impregnation was performed so that K was first impregnated, calcined followed by an 

impregnation of Ru and a final calcine, and then the two precursors were reversed so that 

Ru was first impregnated. XRD analysis of the two catalysts showed that when first 

impregnated Ru, the hollandite structure would form, but not when K was first 

impregnated. Additionally, SEM images showed that the hollandite nanowhiskers seemed 

to nucleate out of a single point to first starburst structures.  

The factors influencing dry impregnation were then studied. These included the 

temperature at which the solution was evaporated and the calcine duration. Temperatures 

between 60°C and 150°C and calcine durations between 1 and 5 hours were studied. We 

determined that at temperatures 60°C and 90°C, the hollandite structure would form 

regardless of the calcine duration. At higher evaporation temperatures, only KRuO4 was 

present, and at 150°C, RuO2 began to be present on the catalyst. These catalysts were tested 

for their low temperature ammonia decomposition activity in 10% NH3/Ar and at a space 

velocity of 30,000 mL/hr/gcat at atmospheric pressure. We found that catalysts synthesized 

at an evaporation temperature of 90°C and calcine duration of 1 hour showed the highest 

activity of the 12 catalysts at 300°C. The least active catalyst was synthesized with an 

evaporation temperature of 120°C and a calcine duration of 3 hours.  

We also further varied the K loading of the catalyst to determine an optimal K 

loading for low temperature ammonia decomposition. K loadings were varied from 0.5, 1, 

3, 6, 12 and 15% and in combination with either 1% Ru or 4% Ru, in order to find an 

optimal K loading for both a high and low loading of Ru catalysts. Interestingly, we found 
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that for both 1% Ru and 4% Ru, 12% K was the optimal loading and produced the highest 

activity at all temperatures when tested in 10% NH3/Ar and at a space velocity of 30,000 

mL/hr/gcat at atmospheric pressure.  

The working state of the catalyst was investigated to determine what the active site 

during ammonia decomposition was. SEM/TEM analysis showed that there was a dramatic 

reducing in the nanorod diameter and that the rods became much more dendritic and 

segmented after H2 reduction and after exposure to ammonia. XRD analysis and elemental 

mapping showed that the dendritic nanorods were composed of metallic Ru and contained 

residual Cl- on the surface. XRD analysis showed that the hollandite and KRuO4 had 

reduced to Ru0 after the hydrogen reduction pretreatment, and this was the phase present 

after exposure to ammonia as well. H2-TPR was performed to understand at what 

temperature the two structures reduce and compared to a 4% Ru catalyst. However, two 

large broad reduction events occurred between 75°C-175°C and between 350°C and 

500°C. To further understand at what temperature KRuO4 and KRu4O8 may reduce, in-situ 

XRD measurements were taken under 5%H2/Ar. We determined that the two structures 

reduced well below 150°C, and the reflection of metallic Ru became visible at 175°C, and 

continued to become sharper and more intense with increasing temperature up to 450°C. 

We determined that the crystallite size of the metallic Ru continued to increase with 

increasing temperature, from 7.4 nm to 16.2 nm at 450°C and at room temperature after 

the catalyst was cooled down under inert. Ex-situ electron microscopy was performed on 

the catalyst after it was reduced at 250°C, 350°C and 450°C. The morphology of the 

catalyst was found to dramatically change at each reduction temperature in addition to the 

particle size. These catalysts were then tested for their ammonia decomposition activity in 
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order to determine if the changes in the crystallite size and morphology had any influence 

on reactivity. While reduction temperatures of 250°C and 350°C resulted in similar 

activities, a reduction of 450°C resulted in a much more activity catalyst, even though this 

reduction temperature resulted in a catalyst with the most stalky like nanorods and largest 

crystallite size. 

The catalyst reduced at 450°C was then compared in activity to that synthesized 

through SEA, in order to synthesize a catalyst was more along the lines of the ideal catalyst 

suggested in the literature. The SEA method was able to synthesize Ru nanoparticles that 

were highly dispersed on the support, and below the limit of detection via XRD. These 

ideal nanoparticles as suggested by the literature were then tested for ammonia 

decomposition and compared to the 4,12 RuK IWI catalyst under identical conditions and 

found to be highly activity at low space velocities, but to have much lower activities 

compared to the IWI catalyst at higher space velocities. We conclude that this may be due 

to differences in the measured dependence of the ammonia partial pressure on the rate of 

reaction. This was determined by fitting the rate of reaction to a simple power law model 

in order to determine the dependence of the reaction rate on the ammonia and hydrogen 

partial pressure for the SEA and IWI catalyst with identical weight loadings. Ultimately, 

the dependence on the hydrogen partial pressures was similar for both catalysts, but the 

IWI catalyst had a higher dependence on the ammonia partial pressure than the catalyst 

synthesized via SEA. This may indicate that there are differences in the rate limiting step 

over the two catalysts. 
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CHAPTER 4 

HIGH THROUGHPUT SCREENING OF RU BASED 

CATALYSTS 

There exists a lack of diversity in the literature for promotional and active metals 

for ammonia decomposition, despite the fact that this reaction has been studied for over 

one hundred years. Primarily, ammonia decomposition had been studied to better 

understand the ammonia synthesis reaction over Fe and Ru catalysts due to the milder 

operating pressure. Now, there interest in this reaction is motivated by the fact that 

ammonia can be used as a hydrogen storage and transportation device, which can 

catalytically decompose to provide a source of hydrogen for PEM fuel cells. In order for 

this to occur, a catalyst must be designed that is not only cost-effective but can exhibit high 

activity at temperatures below 450°C in order to avoid either poisoning of the membrane 

from ammonia in the effluent, or thermal degradation of the membrane from high operating 

temperatures. While Ru is intrinsically the most active metal for this reaction, current 

studies work to optimize Ru based catalysts through particle size and shape manipulation 

and investigating various supports and promoters. However, this is strongly limited alkali 

and alkaline earth metal promoters, and to basic supports such as MgO, and much more 

complicated supports such as carbon nanotubes and various spinel and perovskite supports. 
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Since the pioneering work performed by Mittasch and coworkers in the early 20th 

century (66) for discovery of ammonia synthesis catalysts, there has been a lack of 

exploration to further define combinations of elements that work either as doubly, or triply 

promoted catalyst systems or as a dual-active site catalyst to create a cost effective, highly 

active low temperature ammonia decomposition. This is mainly due to the time-consuming 

nature of a study of this magnitude. This is why the utilization of high throughput 

experimentation allows for the testing more exotic catalyst combinations in an efficient 

manner. Therefore, we sought to find a highly active low temperature ammonia 

decomposition by looking at K promoted catalysts that contained either 1, 2 or 3 wt% Ru 

and added one of 31 different metals to these three Ru weight loadings, in order to 

determine to what extent the Ru content could be reduced while still maintaining high 

activity at low temperatures. In total over 100 unique catalyst combinations were 

synthesized.  

However, this can be further expedited with the use of machine learning algorithms. 

High throughput experimentation is perfectly suited as a means to provide large amounts 

of homogeneous data as an input for machine learning algorithms, which can then either 

guide a second iteration of catalyst design or provide more efficient means of screening 

catalysts by lowering the number of catalysts needed to be tested within a given design 

space, in order to predict the activity of the catalysts within the rest of the design space.   

4.1 Ru Substitution by Transition Metals 

In order to begin screening for bi-metal ammonia decomposition catalysts, various 

previous and non-precious metals were chosen to replace half of the Ru content in a 4 wt% 
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Ru catalyst supported on γ-Al2O3 (4 Ru). These included Co, Ni, Fe, Mn, Zn, Mo, Hf and 

Y transition and rare earth metals, the latter of which have very little information 

concerning their catalytic performance in the literature. Additionally, Pt, Os, Ir and Rh 

previous metals were also chosen. Very little experimental literature is available on Ru 

based bimetallic or bimetal catalysts for ammonia decomposition. Here we do not claim 

that these catalysts are in fact bimetallic, but simply that two metals were impregnated onto 

the support. Figure 4.1 shows the catalytic activity of these catalysts measured under 1% 

NH3/Ar and at a space velocity of 30,000 mL/hr/hgcat. 

Except for 2,2 RuFe at 250°C, all catalyst performed poorly with less Ru compared 

to the baseline catalyst of 4 wt% Ru. However, the most promising catalysts were found to 

be those substituted with either Mg, Hf or Y which are not typically considered active for 

catalytic reactions. Interestingly, we see that the addition of Ni resulted in one of the worst 

catalyst activities, while previous literature suggests that Ni is one of the most promising 

non-precious ammonia decomposition metals. These studies typically report high activities 

between 550 – 650°C, and do not see appreciable activities within the ranges studied here 

(103, 259).  

Ultimately, substitution of Ru with a transition-based metal will result in a catalyst 

with less intrinsically active active sites as compared to the 4 Ru catalyst. For example, 

Chen et al. (260) synthesized bimetallic Ru-Fe nanoparticles on carbon nanotubes (CNT) 

and showed that these catalysts exhibited a fast desorption of N adatoms from the surface 

compared to Ru/CNT catalysts but ultimately resulted in similar activity as a Ru/CNT 

catalyst after H2 reduction.  Additionally, Fe has been shown to bind N2 too strongly to be 

a good ammonia decomposition catalyst, and Co too weakly (79, 80). This evident in the 
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reaction data at 250 and 350°C, where 2,2 RuFe shows higher activity compared to 2,2 

RuCo at lower temperatures because it requires less energy to activate NH3. While on the 

other hand, Co shows poor activity at these low temperatures since it requires more energy 

to bind N effectively. Zhang et al. (261) demonstrated that at 550°C, Fe/CNT catalysts had 

lower activity compared to Co/CNT, and that bimetallic nanoparticles of FeCo/CNT 

resulted in higher activity that just Fe/CNT. Three different bimetallic composition were 

studied but none of them performed better than Co/CNT at the given temperature. Lorenzut 

et al. (262) demonstrated that bimetallic FeMo nanoparticle supported on yttria-stabilized 

zirconia (YSZ) outperformed both of their monometallic counterparts Fe/YSZ and 

Mo/YSZ, but not until temperatures above 600°C. CoMo bimetallic catalysts have also 

Figure 4.1. NH3 conversion of 2,2 RuM (M= Fe, Ni, Co, Mn, Zn, Mo, Hf or Y) supported 

on γ-Al2O3. Reaction conditions: 1% NH3/Ar, 30,000 mL/hr/hgcat and atmospheric 

pressure. 
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been extensively studied, and have been shown to also be more active than their 

monometallic counterparts, but again require temperatures above 450°C for appreciable 

conversion to be achieved (263–266).  

Additionally, Pt, Os, Rh and Ir precious metals were also studied due to the high 

activity of their monometallic counterparts. While the main objective of this work was to 

find a cost, effective catalyst compared a catalyst containing 4 wt% Ru, by substituting Ru 

with another precious metal, this may have resulted in such an active catalyst that the cost 

per hydrogen produced could have been lower than that of just a Ru supported catalysts. 

Figure 4.2 shows the activity results of precious metal substituted Ru catalysts compared 

to the baseline 4 Ru catalyst under identical reaction conditions. Here we see a similar trend 

as the non-precious metal catalysts, that regardless of the metal substituted, there is no 

enhancement in activity compared to the baseline catalyst with more Ru content.  

We found here bi-metal Ru catalysts based off of transition metals to be poor 

substitutes to catalysts containing only Ru. While studies do in fact create successful 

bimetallic catalysts for ammonia decomposition, the comparisons are made between the 

bimetallic catalyst and a catalyst with Ru only. Therefore, for transition metals that are 

active for ammonia decomposition, it is no surprise they would be more active than a Ru 

only catalyst since the Ru content is constant in both cases and additional active metal is 

added to the bimetallic catalyst. Additionally, many of these studies include computational 

calculations of over various bimetallic crystal planes, which are not feasible to 

experimentally produce (89, 267, 268).  
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Due to the lack of success, we found in using previous literature as a basis for creating cost 

effective Ru based catalyst for ammonia decomposition, a more Edisonian approach was 

taken encompassing a broader scale of metals and weight loadings. Additionally, there are 

very few metals that show promise for ammonia decomposition at the low temperatures 

studied throughout this body of work.  

4.2 Design Space for Ammonia Decomposition Catalysts 

Previously, our group determined the effect of promoters and preparation solvents 

on ammonia decomposition activity for Ru supported catalysts (118). Of the following 

promoters, K, Cs, Ba, Sr, Rb, Ca, Na and Li, the most promising promoters were found to 

Figure 4.2. NH3 conversion of 2,2 RuM (M= Os, Rh, Pt or Ir) supported on γ-Al2O3. 

Reaction conditions: 1% NH3/Ar, 30,000 mL/hr/hgcat and atmospheric pressure. 
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be K, Cs and Ba. The effect of these three promoters and the optimal promoter loadings 

was determined through response surface methodology, which was built around a 4 wt% 

Ru catalyst supported on ɣ-Al2O3. The weight loading of the three promoters was varied 

from 0 to 12% and either one or two promoters were used. A catalyst promoted by 12 wt% 

K was found to be the most active. For this reason, we chose a 4 wt% Ru, 12 wt% K catalyst 

supported on ɣ-Al2O3 as a baseline catalyst to make activity comparisons with catalysts 

containing less Ru. Using this catalyst as a basis, the total metal loading was held constant 

at 4 wt%, and the Ru content was reduced to either 3 wt%, 2 wt% or 1 wt% with the 

remaining metal loading be composed of either 1 wt%, 2 wt% or 3 wt% of one of the 

following elements: Mg, Ca, Sr, Sc, Y, Zr, Hf, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Os, Co, 

Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, In, Sn, Pb or Bi. These will be referred to as 

secondary elements. Lastly, each catalyst was promoted with 12 wt% K. This resulted in 

over 100 unique catalyst formulations. The nomenclature for catalyst loadings will first 

indicate the three weight loadings of Ru, the secondary metal and K, followed by the three 

elements that were used in that catalyst. For example, a catalyst could composed of 3 wt% 

Ru, 1 wt% Fe and 12 wt% K will be referred to as 3,1,12 RuFeK, and a catalyst composition 

of 1 wt% Ru, 3 wt% Mg and 12 wt% K would correspond to 1,3,12 RuMgK. All catalysts 

were supported on ɣ-Al2O3 (192 ± 8 m2/g) for the purpose of the high throughput screening 

study.  

While the K promoter used here was found to be the optimal loading for a 4 wt% 

Ru catalyst, this may not be the case for all of the catalysts studied here due to the variety 

of secondary metals probed. In fact, there is no agreement on what the most active promoter 

is for a Ru supported catalyst and is a function of the support and promoter precursor. Other 
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studies have shown that LiOH was the most active promoter compared to CsOH and KOH 

on a ɣ-Al2O3 supported Ru catalyst (269, 270) due to surface modification of the support 

with alkali hydroxides. However, here we have shown that K also modifies the ɣ-Al2O3 

support by forming alkali aluminates in Chapter X. By using the same promoter and 

support throughout this study, we can ensure that changes in the rate of reaction will be 

due to the addition of the secondary element and not due to newly introduced promoter 

support interactions, which is beyond the scope of this work. Additionally, it would be time 

consuming and costly to reproduce the design space with a different promoter, effectively 

doubling or tripling the number of catalysts that would need to be synthesized and screened. 

However, it would be worthwhile to further investigate different promoters after promising 

catalysts have been identified.   

4.2.2 Effect of Support on Ammonia Decomposition Activity 

Various supports were probed in order to determine if ɣ-Al2O3 was the best support 

to use for this study, including TiO2, SiO2, α-Al2O3, CeO2 and ZSM-5. These supports were 

chosen in order to probe the effects of surface area, strong metal support interactions 

(SMSI), oxide reducibility and mesoporosity on catalyst activity. The results of the various 

supports in relationship to ɣ-Al2O3 are shown Figure 4.3 for 3,1,12 RuHfK catalysts. The 

activity was measured in 100% NH3 at a space velocity of 5,400 mL/hr/gcat and atmospheric 

pressure. Interestingly we found low surface area α-Al2O3 to be almost as active as ɣ-Al2O3 

at 400°C. However, very little information is available on α-Al2O3 as a support for 

ammonia decomposition due to its low surface area and inertness and is primarily used to 

carry out kinetic studies to minimize temperature gradients and to minimize channeling 
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(269). For ammonia synthesis, α-Al2O3 was shown to have the poorest performance 

compared to SiO2, ZrO2, ɣ-Al2O3, and MgO, regardless of the active metal (271). In 

contrast, a recent ammonia synthesis study varied the calcine temperature of alumina in 

order to study the different phases of Al2O3 for supported Ru-Ba catalysts (272). This study 

found that calcining the Al2O3 support to 980°C resulted in the formation of θ-Al2O3 and 

α-Al2O3 and resulted in the most active ammonia synthesis catalyst over α and ɣ phase 

alumina. Further heating to 1300°C resulted in the formation of α-Al2O3 and resulted in an 

increase in Ru particle size. The larger Ru particles may have a higher diffusivity over 

larger Ru particles compared to smaller Ru particles (273, 274). Additionally, α-Al2O3 also 
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Figure 4.3. Ammonia decomposition activity of 3,1,12 RuHfK over various supports. 

Reaction conditions: 5,400 mL/hr/gcat, 100% NH3 and 1 bar. 
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exhibited the least amount of surface OH groups. Hydrogen atoms that migrate to the 

support may interact with the surface OH groups and can cause hydrogen poisoning. 

Therefore, the lack of surface OH groups may reduce hydrogen poisoning and increase the 

rate of reaction at higher temperatures. Additionally, we observed high activity at low 

temperature on 3,1,12 RuHfK supported on CeO2. Investigation into CeO2 as a support is 

relatively new has been shown to prevent sintering of the active metal when used as a 

promoter for Ni supported catalysts (275). Recently Ru and Ni catalysts supported on CeO2 

have been tested for ammonia decomposition, and the activity was found to be greatly 

enhanced when Ru and Ni were supported on CeO2, in relation to Al2O3 supported catalysts 

(276). However, the synthesized alumina support was found to be in the χ phase, instead 

of the commonly used and thermodynamically stable γ phase of alumina. This may lead to 

a misleading representation of the activity of CeO2 supported catalysts in relation to 

alumina.   

Titania was shown to be the least active support followed by SiO2. Yin et al. (277) 

also observed TiO2 to be a poor support for Ru catalysts compared to MgO, Al2O3 and 

CNT at temperatures up to 600°C. Choudhary et al. (278) synthesized Ni catalysts on HY 

zeolite, SiO2, HZSM-5 and Al2O3 and found that the activity per metal site was greatest on 

SiO2 supports.  However, Li et al. (101) reported that the addition of K to Ru/SiO2 catalysts 

did not result in a large improvement in catalytic activity compared to unpromoted the 

Ru/SiO2 catalyst. Therefore, it is apparent that the optimal support will vary depending on 

the active metal and promotional environment. Previous literature has shown that strongly 

basic supports enhance the ammonia decomposition reaction. Surface modification of 

alumina with K has been shown to increase basicity of the support which may explain the 
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enhanced activity of the two alumina supports. Sun et al. (231) showed that titania and 

silica lacked the proper vacant sites and ability to anchor KNO3 that is necessary to generate 

basicity in other supports such as alumina and zirconia. This may explain the poor 

performance of the two supports. From this study, we concluded that high surface area ɣ-

Al2O3 was the most effective support for Ru supported catalysts with very high loadings 

of K promoter and was utilized for all catalyst during the high throughput screening.  

4.3. High Throughput Screening 

The K promoted Ru based catalysts were screen for ammonia decomposition 

activity in 1% NH3/Ar at 30,000 mL/hr/gcat and at atmospheric pressure. Figure 4.4,  

Figure 4.5, Figure 4.6, and Figure 4.7 show the activity results at 250°C, 300°C, 350°C 

and 400°C respectively. In each figure, the top graph (a) corresponds to 1 wt% Ru 

substitution with a secondary metal (3,1,12 RuMK), the middle graph (b) corresponds to 

2 wt% Ru substitution (2,2,12 RuMK), and the last graph (c) corresponds to 3 wt% Ru 

substitution (3,1,12 RuMK). The secondary metal substituted is label on the x-axis. 

Additionally, each figure has the activity of the baseline 4,12 RuK catalyst indicated by 

the black dashed line under identical operating conditions in order to make direct 

comparisons to activity at each catalyst weight loading. respectively. In each figure, the 

top graph (a) corresponds to 1 wt% Ru substitution with a secondary metal (3,1,12 

RuMK), the middle graph (b) corresponds to 2 wt% Ru substitution (2,2,12 RuMK), and 

the last graph (c) corresponds to 3 wt% Ru substitution (3,1,12 RuMK). The secondary 

metal substituted is label on the x-axis.  
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Because so many catalysts were able to achieve the same activity as the baseline catalyst 

at 400°C, we chose a milder temperature of 300°C to determine successful substitutions 

of Ru with a secondary metal. This is because we are interested in not only a low 

 Ru content catalyst, but also a catalyst that has high activity at low temperatures. 

Additionally, these screening results utilized only 1% NH3 in the feed gas. The rate of 

Figure 4.4. High throughput screening results at 250°C for (a) 3,1,12 RuMK, (b) 2,2,12 

RuMK and (c) 3,1,12 RuMK, where the substituted metal M listed on the x-axis. 

Reaction conditions: 1%NH3/Ar, 30,000 mL/hr/gcat and atmospheric pressure. The black 

dashed line corresponds to the activity of 4,12 RuK at identical conditions. 
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reaction is known to have a negative dependence on the partial pressure of ammonia, so 

as the ammonia concentration increases, the rate of reaction should also decrease (258). 

Therefore, catalysts that do not perform well at 300°C with 1% NH3 are not expected to 

perform well when the reaction conditions become harsher. Under these conditions, 

catalysts containing 3% Ru and 1% of either Mg, Ca, Hf, Sc, Ta, Zr, Ir or Y achieved 

Figure 4.5. High throughput screening results at 300°C for (a) 3,1,12 RuMK, (b) 2,2,12 

RuMK and (c) 3,1,12 RuMK, where the substituted metal M listed on the x-axis. 

Reaction conditions: 1%NH3/Ar, 30,000 mL/hr/gcat and atmospheric pressure. The black 

dashed line corresponds to the activity of 4,12 RuK at identical conditions. 
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greater than 80% conversion. As the ratio or Ru to secondary metal decreased from 2% 

Ru and 1% Ru, only Sr, Y Zr and Hf continued to exhibit excellent performance, while 

substitution with Bi, In, Mo, Nb, Cu, Re, Cd, Sn and Pb dramatically lowered the activity 

in relation to the 4,12 RuK catalyst regardless of the weight loadings.  

Figure 4.6. High throughput screening results at 350°C for (a) 3,1,12 RuMK, (b) 2,2,12 

RuMK and (c) 3,1,12 RuMK, where the substituted metal M listed on the x-axis. 

Reaction conditions: 1%NH3/Ar, 30,000 mL/hr/gcat and atmospheric pressure. The black 

dashed line corresponds to the activity of 4,12 RuK at identical conditions. 
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At 250°C, multiple catalyst at each weight loading are able to outperform the 4,12 

RuK baseline catalyst with less Ru. These include 3,1,12 RuMgK, 3,1,12 RuCaK, 3,1,12 

RuSrK, 3,1,12 RuScK, 3,1,12 RuYK, 3,1,12 RuZrK, 3,1,12 RuHfK, 3,1,12 RuIrK, 3,1,12 

RuRhK, 2,2, 12 RuSrK, 2,2,12 RuYK, 2,2,12 RuZrK, 2,2,12 RuTaK, 2,2,12 RuRhK, 

Figure 4.7. High throughput screening results at 400°C for (a) 3,1,12 RuMK, (b) 2,2,12 

RuMK and (c) 3,1,12 RuMK, where the substituted metal M listed on the x-axis. 

Reaction conditions: 1%NH3/Ar, 30,000 mL/hr/gcat and atmospheric pressure. The black 

dashed line corresponds to the activity of 4,12 RuK at identical conditions. 
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1,3,12 RuMgK, 1,3,12 RuyK, 1,3,12 RuZrK, 1,3,12 RuHfK and 1,3,12 RuTaK. At this 

temperature, the Ta substituted catalyst resulted in the most active catalyst regardless of 

the compositional loading. At this low of temperature, the most active substituted catalysts 

were composed of alkali metals, alkali earth metals, rare earth metals and precious metals. 

Catalysts with 3 wt% Ru and 1 wt% of Mg, Sr, Ca, Hf, Sc, Ta, Zr, Ir or Y achieved greater 

than 83% conversion at 300°C. At 350°C and 1 wt% substitution of Ru with W, Mn, Co, 

Pd, and Ag begin to light-off, but decrease in activity with decreasing Ru loading in relation 

to the 4,12 RuK baseline activity. Interestingly, substitution with Cd shows excellent 

activity with lower loadings of Ru. Cd has been previously studied as a catalyst for 

hydrolysis, esterification and transesterification of triacylglycerides and fatty acids (279). 

Interestingly K supported catalysts have also been studied for transesterification reactions 

(221, 225). Cd compounds are of interest because it can act as a Lewis acid, activating 

electronegative atoms such as N2. Other common Lewis acids include Cu, Zn, and Sn, but 

we do not see a similar enhancement in activity with the addition of these metals. Again, 

we see that all of the alkali earth and alkaline earth metals achieve complete conversion at 

350°C, but as the Ru loading decreases, the activity of Mg, Ca, Sr and Sc fall below the 

4,12 RuK activity baseline, while Y, Zr, Hf and Rh substitution were still highly active 

with only 1% Ru. By 400°C, many more catalysts begin to reach the same activity as the 

baseline catalyst. With 1% Ru substitution, the worst catalysts contained Nb, Re and Bi, 

and at 3% Ru substitution, the worst catalysts contained Nb, In, Sn, Pb, Mo, W, Pd, Ir, Pt 

and Cu.  

The substitution of Ru with transition-based metals generally resulted in a catalyst 

with poorer activity than the baseline. This was also observed in Figure 4.1 and Figure 4.2 
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when a promoter was not added to the catalysts. In general, this can be attributed to the 

replacement of highly active Ru active sites with intrinsically less ones. The Ru active sites 

are not being electronically or structurally modified, simply replaced. As for substitution 

with the noble metals Pt, Pd, Rh, Os, Ir, Pt and Au, these metals exhibited a strong 

correlation between and weight loading. Generally, we see that the activity decreases with 

increasing noble metal loading, while the activity was not as heavily influenced by 

variation in transition metal weight loadings.  Higher weight loadings of noble metals 

would result in a stronger degree of hydrogen splitting and spillover. Hydrogen has been 

well known to be a poison to the ammonia decomposition reaction because it blocks the 

active sites of Ru for ammonia adsorption (272, 280–282). So, increasing and noble metal 

loading while simultaneously decreasing the Ru loading and thus the number of active 

sites, could result in inhibition on the rate of reaction because of the hydrogen spillover 

effect (283–286). The most successful catalysts came from the substitution of Ru with 

alkali metals, alkali earth metals and rare earth metals. While alkali metals are generally 

considered to be electronic promoters, Mg and Ca have shown to provide structural 

enhancement (115, 122, 287), increasing the number of active sites present as opposed to 

making them more reactive. Recent work has investigating Sr niobates and titanates as 

supports for ammonia synthesis have shown that Sr niobate can enhance activity by 

inducing epitaxial growth of Ru (288) and that Sr titanate (281) can alleviate hydrogen 

poisoning and increase the electron density of Ru sites. Figure 4.8 shows SEM images of 

fresh and spent 3,1,12 RuCaK, 3,1,12 RuMgK and 3,1,12 RuSrK catalysts, highlighting 

the morphological differences of the Ru nanowhiskers both before and after exposure to 

ammonia, with the addition of different alkaline earth metals. All three catalysts exhibited 
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XRD reflections indicative of hollandite crystal structure, and so the variation in the rod 

diameter and length is primarily due to the addition of the secondary element, which may 

in turn influence the pH of the synthesis solution for example.  

Additionally, we wanted to determine the applicability of the results gathered 

through high throughput experimentation to those from a traditional plug flow reactor 

setup. Therefore, various 3,1,12 RuMK catalysts were chosen to be tested in a plug flow 

reactor under more realistic operating conditions. Specifically, the NH3 concentration was 

increased from 1% to 100% and the space velocity was changed to 5,400 mL/hr/gcat in 

order to meet H2 productivity benchmarks set previously by ARPA-E (289) that can be 

financially feasible for upscaling the technology for H2 production. Figure 4.9 shows the 

Arrhenius plot and calculated activation energies for randomly selected 3,1,12 RuMK 

Figure 4.8. SEM images of fresh (a) 3,1,12 RuCaK, (b) 3,1,12 RuMgK, (c) 3,1,12 

RuSrK and spent (d) 3,1,12 RuCaK, (e) 3,1,12 RuMgK and (f) 3,1,12 RuSrK. 
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catalysts, where M = Y, Hf, Sr, Ca, Fe, Bi, Cu or Mg. The conversion was measured from 

250°C to 450°C in 50°C increments, and the H2 uptake was measured for each catalyst 

using H2 chemisorption experiments. From these, the turnover frequency (TOF) for each 

catalyst was determined and the activation energy could be calculated for each catalyst. 

The catalysts with the lowest TOF were Bi and Cu, which correlates to what was exhibited 

in the high throughput screening experiments. Additionally, catalysts with the highest 

conversion were Mg, with Rh and Sr performing slightly behind these two catalysts.  

From the measured activation energies, we can see that Hg and Mg substitution had 

dramatically lower activation energies than those with Bi, Cu, Sr or Y, and that Ca and Fe 

substitution had even higher activation energies than these. This suggests that the rate 

determining step may be changing with the various substituted metals (78).  Because of 

this, we wanted to gain further insight into two specific substituted metal catalysts, Sr and 

Fe, of which were a good and bad performing catalyst. Additionally, we did further 

Figure 4.9. Arrhenius plot of various 3,1,12 RuMK catalysts and calculated apparent 

activation energies. Turnover frequencies calculated from H2 uptake and assuming a ratio 

of 1 H2: 1 Ru active site. Reaction conditions: 100% NH3, 5,400 mL/hr/gcat and 

atmospheric pressure. 
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characterization and activity measurements on these catalysts in order to validate the 

findings of the high throughput screen.  

4.4 XRD Analysis 

4.4.1 Phase Identification 

Due to the complexity of the catalysts studied here, XRD was performed on each 

catalyst in order to determine which Ru species were present and whether or not a 

crystalline secondary phase was present at the various weight loadings. Specifically, we 

identified the formation of RuO2, KRuO4 and KRu4O8 species in each pattern through 

phase identification and calculated the crystallite size of these Ru metal oxides using 

Scherrer’s equation. The summation of the different Ru species in catalyst can be found in 

Table 4.. There were no obvious correlations made between Ru species present and the 

activity of each catalyst, most likely because the addition of the secondary metal was more 

influential in determining activity than the crystal phase. Future work We have 

demonstrated previously that the Ru species all reduce to metallic Ru during the H2 pre-

treatment.  
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Table 4.1. Summary of the Ru crystal phases present in each catalyst tested for low 

temperature ammonia decomposition where the first column indicates the composition 

weight loading, the second column indicates the secondary metal, and a “Y” indciates 

that the corresponding species is present. 

 

Ru, Secondary Metal,K  

Weight Loading 

Secondary 

Metal 
RuO2 KRuO4 KRu4O8 

3,1,12 

Mg 

Y  Y 

2,2,12 Y   

1,3,12 Y   

3,1,12 

Ca 

   

2,2,12    

1,3,12  Y  

3,1,12 

Sr 

 Y  

2,2,12  Y  

1,3,12    

3,1,12 

Sc 

Y Y  

2,2,12 Y   

1,3,12 Y   

3,1,12 

Y 

 Y  

2,2,12  Y  

1,3,12  Y  

3,1,12 

Zr 

Y   

2,2,12 Y Y  

1,3,12 Y Y  

3,1,12 

Hf 

   

2,2,12  Y  

1,3,12  Y  

3,1,12 

Nb 

Y   

2,2,12 Y   

1,3,12 Y   

3,1,12 

Cr 

Y  Y 

2,2,12 Y   

1,3,12    

3,1,12 

Mo 

Y Y  

2,2,12 Y   

1,3,12 Y   

3,1,12 

W 

Y   

2,2,12 Y   

1,3,12 Y   

3,1,12 

Mn 

  Y 

2,2,12   Y 

1,3,12   Y 

3,1,12 Re    
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2,2,12 Y   

1,3,12 Y   

3,1,12 

Fe 

  Y 

2,2,12   Y 

1,3,12    

3,1,12 

Os 

  Y 

2,2,12   Y 

1,3,12    

3,1,12 

Co 

  Y 

2,2,12 Y   

1,3,12    

3,1,12 

Ir 

  Y 

2,2,12  Y Y 

1,3,12  Y Y 

3,1,12 

Ni 

Y   

2,2,12 Y   

1,3,12    

3,1,12 

Pd 

Y  Y 

2,2,12 Y  Y 

1,3,12 Y  Y 

3,1,12 

Pt 

Y   

2,2,12 Y   

1,3,12 Y   

3,1,12 

Cu 

Y   

2,2,12 Y   

1,3,12    

3,1,12 

Ag 

   

2,2,12    

1,3,12    

3,1,12 

Au 

Y   

2,2,12 Y   

1,3,12 Y   

3,1,12 

Zn 

 Y  

2,2,12 Y   

1,3,12 Y   

3,1,12 

Cd 

 Y  

2,2,12  Y  

1,3,12  Y  

3,1,12 

In 

Y   

2,2,12 Y   

1,3,12 Y   

3,1,12 

Sn 

   

2,2,12 Y   

1,3,12    

3,1,12 Pb    
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2,2,12    

1,3,12    

3,1,12 

Bi 

   

2,2,12    

1,3,12    

 

4.4.2 Effect of Secondary Element and Crystallite Size on Activity 

Due to the structure sensitivity of ammonia decomposition over Ru, previous 

studies have identified optimal Ru particle sizes between 3 and 5 nm (113, 290). Within 

this regime, there is a higher probability of the occurrence of B5 sites, which consist of 

ensembles of five Ru atoms that have a three-fold hollow site and a bridge site in close 

proximity (112). This B5 site has been hypothesized to be the most active site for ammonia 

decomposition over Ru. While it is has been shown that Ru step sites are more active than 

flat surfaces, there is no direct way to measure the activity or number of B5 sites that may 

be present in a catalyst. Other works suggest that the optimal Ru particle sizes are closer to 

3-5 nm (291), while others have observed that hemispherical particles between 7 – 8.5 nm 

are much more active than Ru particles that are roughly 1.5 nm in size (114, 115). Other 

works suggest that a broad distribution of Ru particle sizes is necessary for high ammonia 

decomposition activity, due to a synergistic effect that occurs between large and small Ru 

particles and the migration of H atoms from large to small Ru particles, thus promoting the 

hydrogenation of adsorbed NHx species (273, 274). For these reasons profile fitting was 

performed on each XRD pattern in order to determine the average crystallite size of RuO2, 

KRuO4 and KRu4O8. The profile fitting was used in order to determine the full-width half 

max (FWHM) of each Ru species reflection, after which the the average crystallite size 

was determined using the Scherrer’s Equation. The average crystallite size for each Ru 



www.manaraa.com

139 

species present in each individual catalyst composition was then averaged together to 

provide a representative crystallite size for each catalyst. An example of the profile fitting 

is given in Figure 4.10 showing part of the XRD pattern from for the 1,3,12 RuMoK 

catalyst. The reflections for the three Ru species were fitted, using the reflections located 

at roughly 12.4°, 17.7° and 47.6° for KRu4O8, reflections located at 28.2°, 35.1°, 39.2°, 

58.3° and 59.7° for RuO2, and reflections located roughly at 26.4°, 27.8° and 31.7° for 

KRuO4 (54, 126). The position of these reflections will vary slight based on the interatomic 

distances of these species, which may change based on crystal stress, strain, or imperfect 

stoichiometry (substitutional doping). Additionally, the peak width can provide 

information on the crystal defects.  Diffraction peaks can be described as a combination of 

both Gaussian and Lorentzian functions (292, 293). A diffraction peak will exhibit 

Gaussian line broadening based on crystal strain, and will exhibit Lorentzian line 

broadening due to crystal size (294). Therefore, a commonly used function to fit diffraction 

peaks is the pseudo-Voigt function, which is a linear combination of Gaussian and 

Lorentzian functions. In this work, each crystalline reflection was fitted using a pseudo-

Voigt peak fit in order to fit both the profile shape and peak width. For the amorphous 

diffraction peaks (ɣ-Al2O3), a split-Voigt function was used in order to capture the peak 

asymmetry. This was performed for each of the 99 catalyst compositions studied in the 

high throughput screen. The crystallite size was then compared to the measured activity at 

300°C and in 1% NH3 at 30,000 mL/hr/gcat.  
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Additionally, due to the variation in secondary metal, the effect of the catalyst 

composition was also probed to determine if particle size was dependent on the secondary 

metal or metal loadings. In order to make comparisons between activity and each catalyst, 

catalysts were grouped based on the weight loadings of each components, and then the 

atomic number of the secondary metal was used to differentiate between each of the 

catalysts within a constant weight loading. The average particle size as a function of NH3 

conversion for each catalyst is shown in Figure 4.1a for the 3,1,12 RuMK catalysts, Figure 

4.1b for the 2,2,12 RuMK catalysts and Figure 4.1c for the 1,3,12 RuMK catalysts. Each 

Figure 4.10. XRD pattern of 1,3,12 RuMoK showing the profile fit using Pseudo-Voight 

and Split-Voight fit and the residual after fitting from 38 – 60°. 



www.manaraa.com

141 

figure contains a minimum of 17 data points. As the Ru loading decreased, in some 

instances the crystallite size becomes too small to accurately measure and identify due to 

the convolution of peaks.   

For catalysts containing 3,1,12 RuMK weight loadings, the smallest Ru average 

particle sizes were catalysts containing Cu (average crystallite size = 9.85 nm, atomic # 29, 

NH3 Conversion = 30%), Os (8.4 nm, #76, 28.2%), Pt (8.86 nm, #78, 28.5%), Au (8.48 

nm, #79, 30.0%), and Ir (7.75 nm, #77, 100%). The largest particle sizes were those 

containing Y (29.51 nm, #39, 95.2%), Cr (28.06 nm, #24, 55.4%), Fe (26.45 nm, #26 and 

Co (31.46 nm, #27, 44%). For the higher weight loadings of Ru, those catalysts with 

smaller average crystallite size are also the most active over a broad range of secondary 

metals. Catalysts within the atomic # range of 30 – 40 exhibit poor performance at average 

particle size less than 15 nm. The catalysts within this atomic # range include Cd and Nb. 

There are other instances where we see that catalysts with larger particle sizes also perform 

well for ammonia decomposition, specifically substitution of Ru with Sc (24.28 nm, #30, 

99.8%). As the amount of Ru decreases from 3% to 2% and then to 1%, we that the area 

of high activity becomes much more concentrated within a range of low average crystallite 

size and secondary metals with low atomic numbers.  

Interestingly with the decrease in Ru weight loading, we do not see a consistent 

decrease in the average crystallite size. For example, catalysts containing Sc, the average 

particle sizes changes from 19.64 nm to 18.8 nm and the conversion decreases to 59.2% 

and then to 52.5% at 1,3,12 RuScK. For the Hf catalysts that exhibited very high activity 

(~80%) across all three catalyst compositions, but the average particle size increased from 

8.46 nm to 16.33 nm and then decreased down to 7.94 nm at the 1,3,12 RuHfK catalyst. 
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So, there is a strong interplay occurring between the composition, secondary metal and 

average particle size in addition to a variety of other features, that makes elucidating trends 

in such a complicated data set very difficult.  

For these reasons, machine learning (ML) has more recently began to be utilized to 

guide catalyst discovery and optimization for a few catalytic reactions including methane 

oxidative coupling, olefine epoxidation and propane ammoxidation (295–298). For studies 

targeted at discovering new catalyst compositions, rudimentary heuristics have been able 

to be determined to create better performing catalysts within very specific composition 

ranges and do not provide information outside of the original design space (147). Work in 

our group has recently shown that we can utilize experimental data to predict ammonia 

decomposition catalysts very accurately while using small amounts of data and outside of 

the range of compositions used in the training data set. Additionally, we can extract features 

from the data set in order to gain insight into what properties are important for influencing 

catalytic activity. The development, application and predicative capabilities of the machine 

Figure 4.11. NH3 conversion at 300°C as a function of average Ru particle size and the 

atomic number of the secondary metal. (a) 3,1,12 RuMK, (b) 2,2,12 RuMK and (c) 

1,3,12 RuMK where M refers to the secondary metal. 
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learning algorithm developed for this purpose can be found elsewhere (299). The 

importance of the feature extraction will be briefly highlighted here.   

4.5 Machine Learning for Catalyst Feature Extraction 

Previously our group has developed a methodology that combines ML and high 

throughput experimentation to make catalyst predictions. We utilize a variety of operating 

parameters, catalyst synthesis conditions, and chemical features that can be easily found in 

databases. These include electronic, geometric, and atomic properties of elements used in 

order to describe each catalyst. These properties, or features, are then used to make 

predictions for catalyst activity and to predict active catalyst compositions that the 

algorithm does not have information about. The body of work demonstrates that we can 

utilize as little as three catalysts as input data to the algorithm to accurately predict the 

activity of other catalysts containing different metals for ammonia decomposition activity 

(147).   Due to the complexity of the data set studied from the high throughput screening, 

machine learning feature extraction is a powerful tool that can help us ascertain which 

properties are most influential in determining catalytic activity. Figure 4. shows the highest 

rank features determined for a random forest model utilizing a leave one out cross 

validation to make predictions on catalyst activity. The determination for which values of 

feature importance denoted an actually meaningful feature can be found elsewhere (147, 

299).   

The algorithm determined that changes in temperature was the most important 

feature determining catalytic activity. As most all reactions exhibit endothermicity or 

exothermicity, this offers no new insight into the inner workings of the catalyst surface but 

does provide evidence in the correctness of the model to learn, as variation in temperature 
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is indeed most influential to changes in activity. The next most important features include 

number of d-shell valence electrons, electronegativity, covalent radius, adjusted work 

function and the number of valence electrons. These features are all related to the electronic 

configuration of the catalysts. Correlations between reactivity of different metal surfaces 

and their electronic environment have been studied for decades. Changes in the catalysts 

composition and proximity to various promoters will affect the strength of the bond formed 

between a metal surface and the adsorbate which will influence the reactivity of that metal 

surface for different catalytic reactions (300, 301). For example, the number of d-shell 

valence electrons for late transition and noble metal surfaces has been directly correlated 

to the reactivity of these metals to small probe molecules (300). However, this feature alone 

is not enough to predict catalytic activity, and this has been experimentally validated by 

Ganley et al. (78) over monometallic catalysts for ammonia decomposition. The position 

of the d-band of different metals relative to their Fermi levels have also been shown to 

accurately describe the reactivity of these metals (commonly referred to has d-band theory) 

(79, 80, 141, 302, 303). This theory has been extensively used in computational catalysis 

to predict reactivity of different metal surfaces. Exceptions to the d-band theory include 

situations where there are large differences in electronegativities between the adsorbate 

and the substrate when the substrate has a nearly full d-band (304–306). Modification of 

the adsorption energy calculations can be modified to include the Pauli repulsion, Pauli 

electronegativity, work function and various local chemical environment information in 

order to enhance the accuracy of these models (307–309). Interestingly, the algorithm was 
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able to decipher these features as most important without have any prior knowledge on the 

reaction or information of the binding energies pertinent to ammonia decomposition. Since 

this study incorporates not only transition and noble metals but alkali, rare earth, and 

alkaline earth metals, this may result in bias towards more electronic features such as the 

electronegativity and covalent radius due to the different interactions between these 

elements with the active metal substrate and the adsorbate. The next 9 most important 

features include less easily correlateable features such as the Os mol%. We have seen that 

removable of these nine features very slightly decreases the overall accuracy of the 

machine learning algorithm predictions and provide little meaningful insight (299). 

Figure 4.12. Highest ranked features according to their feature importance for 

determining ammonia decomposition activity for catalysts with 3,1,12 RuMK, 2,2,12 

RuMK and 1,3,12 RuMK weight loadings. Adapted from ref (77). 
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We have looked at some of these individual features and their 2-way interactions 

and have found some general trends within them, for example, a low mean absolute 

deviation (MAD) of the catalyst work function and a low MAD of the number of d-shell 

valence electrons results in a catalyst with higher activity. This is exhibited in the contour 

plot shown in Figure 4., which shows these two variables as a function of the NH3 

conversion measured at 300°C and 1% NH3 concentration. However, as displayed in Figure 

4.1, we also saw a general trend that decreasing particle size and lower atomic number of 

the secondary element also resulted in a catalyst with higher activity. The convolution of 

these multiple variables exhibits the power of machine learning to disseminate the 

relationship between activity and multiple variables, such to a degree that cannot be 

generalized by the human mind. However, with these conclusions, future iterations of 

catalyst design can be implemented based off these trends discovered here.  

4.6 Investigation of Sr and Fe Catalysts 

This section is dedicated to understanding the influence of Sr and Fe on ammonia 

decomposition kinetics and reactivity. Sr addition of the K promoted Ru based catalysts 

allowed for the Ru content to be decreased down to 1% Ru, while still maintaining 

extremely high activity at low temperatures and in a flow of 1% NH3/Ar. While Mg, Ca 

and Ba have been thoroughly studied for ammonia synthesis, there is very little information 

about the other alkaline earth metals such as Sr. In contrast, the Fe containing catalysts 

became less active as the amount of Fe increased and the amount of Ru decreased, even 

though Fe has also been shown to be an effective ammonia decomposition catalyst. 

Typically, Fe containing catalysts are prone to forming nitrides and thus techniques such 

as core shell encapsulation of the Fe nanoparticles are taken to avoid this (310, 311). For 



www.manaraa.com

147 

these reasons, Sr and Fe were chosen to discern trends in catalytic activity under high 

concentrations of ammonia, for their long-term stability, and to grasp a better 

understanding of the ammonia decomposition kinetics over the Sr and Fe containing 

catalysts.  

The apparent activation energies were calculated for each of the 3 weight ratios of 

Sr and Fe catalysts under differential conditions (2 -12% conversion) and under 100% NH3 

at a space velocity of 5,400 mL/hr/gcat and compared to the apparent activation energy of 

the 4 Ru and 4,12 RuK catalysts under identical conditions. Before measurements were 

taken, the Weisz-Prater criterion was used to determine the absence of internal mass 

transfer resistances (312, 313). The Weis-Prater criterion was used to determine the 

Figure 4.13. Ammonia decomposition activity at 300°C, 1% NH3/Ar and 30,000 

mL/hr/gcat as a function of the mean absolute deviation (MAD) of the number of d-shell 

valence electrons and the MAD of the catalyst work function. 
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absence of internal diffusion resistances. The Weis-Prater criterion is given by equation 

4.1:  

rA
' ρ

c
RP
2

DeCAS

≪1 

(4.1) 

where 𝑟𝐴
′= measured NH3 reaction rate (mol/kg/s), 𝜌𝑐= catalyst pellet density (750 kg/m3), 

𝑅𝑃
2= pellet radius (2.25x10-5 m), 𝐷𝑒=effective diffusivity of NH3 in the catalyst pellet and 

𝐶𝐴𝑆 = NH3 concentration at the pellet surface (16.7 mol/m3). Effective diffusivity is 

calculated by equation 4.2: 

De=
DNH3-H2ϕpσ

τ
 

(4.2) 

where 𝜙𝑝= pellet porosity, 𝜎  is the constriction factor, and 𝜏  is the tortuosity. Typical 

values for a catalyst pellet are 𝜙𝑝=0.4, 𝜎=0.8, and 𝜏= 3 (values adapted from ref. 64).  

𝐷𝑁𝐻3−𝐻2 is the diffusion coefficient of NH3 in H2 at 400oC and is given in equation (4.3):  

DNH3-H2=
0.00266T3/2

PMNH3-H2
1/2 σNH3-H2

2 ΩD

 (4.3) 

where T is the temperature (K), P is the pressure (bar), MNH3-H2=2*[(1/MNH3)+(1/MH2)]
-1, 

MNH3=molecular weight of NH3, MH2 = molecular weight of H2, 𝜎𝑁𝐻3−𝐻2 = characteristic 

length (Å) and Ω𝐷 is the diffusion collision integral (dimensionless) (313). 𝐷𝑒 was found 

to be 3.51 x10-4 m2/s. 

The measured reaction rate at 400oC for the unpromoted 4 Ru catalyst is 2.07 

mol/kg/s. The LHS of the Weis-Prater criterion equates to 1.34x10-3 which is much less 

than 1. Therefore, the criterion is satisfied. Figure 4. shows the Arrhenius plots for the 



www.manaraa.com

149 

RuSrK and RuFeK catalysts. Here, measurements were conducted under differential 

conditions in order to capture the kinetically limited regime of each catalyst. Additionally, 

H2 chemisorption was performed on each catalyst in order to calculate the number of 

exposed active sites present. Turnover frequencies (TOF) were calculated at 350°C and 

400°C by normalizing the rate of reaction to the number of exposed Ru atoms were gram 

of Ru, which was measured through H2 chemisorption. The H2 uptake, TOF and apparent 

activation energies are shown in Table 4..  The addition of either Sr or Fe to the Ru based 

catalyst resulted in an increase the apparent activation energy for each catalyst regardless 

of the compositional weight loadings. The 4,12 RuK catalyst exhibited an activation energy 

of 65.7 ± 7 kJ/mol, where the Sr containing catalysts had apparent activation energies 

between 149.6 and 156.4 kJ/mol, and the Fe containing catalysts had values vastly larger 

values between 248 and 251 kJ/mol. The apparent activation energies for the Fe containing 

catalysts is even higher than that which has been calculated for the rate determining step 

of the recombination and desorption of molecular N2 on a Ru (001) crystal, of 184 kJ/mol 

(81). kJ/mol. Therefore, Fe dramatically inhibits the rate of reaction with even substitution 

Figure 4.14. Arrhenius plot of (a) RuSrK and (b) RuFeK based catalysts. Reaction 

conditions: 100% NH3, 5,400 mL/hr/gcat and atmospheric pressure. Apparent 

activation energies were conducted under differential conditions. 
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of just 1% Ru with Fe in relation to the 4,12 RuK catalyst. However, an increase in the 

apparent activation energy may suggest that the rate determining step is changing with the 

addition of the second metal. The catalysts were run in 100% NH3, 5,400 mL/hr/gcat and 

at atmospheric pressure. Comparing the TOF of the Fe based catalysts to those of the 4 Ru 

and 4,12 RuK at 350°C and at 400°C, we see that the TOF decreases from 0.97 to 0.41 and 

finally to 0.28 with decreasing Ru loading. The Sr based catalysts also increase the apparent 

activation significantly from the 4,12 RuK catalyst and only slight in regards to the 

unpromoted 4 Ru catalyst. Therefore, we can assume that the addition of Fe is indeed 

negative to the overall performance of the catalyst and does not seem to modify the Ru 

active sites in any matter. Instead, we see that the Ru active sites are simply being replaced 

with less active Fe sites for ammonia decomposition. In the case of Sr, the apparent 

activation energy slightly increased with increasing Sr loading from 149.6 ± 4.1 kJ/mol to 

153.7 ± 2.4 kJ/mol to 156.4 ± 1.6 kJ/mol. These values are slightly lower than the 184 

kJ/mol required for the recombinative desorption of N2 from Ru stepped surfaces. 

Additionally, the TOF for each of the Sr catalysts actually increases with decreasing Ru 

loading from 0.88 s-1 for the 3,1,12 RuSrK catalyst, to 1.78 s-1 for the 1,3,12 RuSrK 

catalyst, which is dramatically more active than the 4,12 RuK catalyst. Additionally, the 

1,3,12 RuSrK catalyst exhibits over twice the apparent activation energy of the 4,12 RuK 

catalyst. We also observe a decrease in the H2 uptake of the Sr based catalysts with 

increasing Sr loading. This suggests that there are less Ru active sites exposed as the 

loading of Ru decreases. However, the apparent activation energy stays relatively 

unchanged while the TOF increases. This suggests that the Sr is electronically modifying 

the Ru active sites and may be changing the rate determining step from that of 4,12 RuK. 
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For example, microkinetic modeling has calculated the dehydrogenation of adsorbed NH3 

to be roughly 44 kJ/mol, the dehydrogenation of NH2 to be 65.3 kJ/mol and the 

hydrogenation of adsorbed NH to be the highest with 161.5 kJ/mol (84). Therefore, Sr 

seems to either change the rate determining step from the dehydrogenation of NH2 species 

to the dehydrogenation of NH (or some combination thereof) or may act to electronically 

modify the Ru active sites. Further experiments have shown that Sr supported catalysts are 

not active alone for ammonia decomposition (not shown). The changes in rate limiting 

steps with different metal surfaces has previously been determined (78), however little 

work has been done on determining how the rate limiting step changes with the different 

one or multiple promoters.  

        
         

           

         

          
          

4 Ru 6.50 0.00 0.14 125.2 8.9

4,12 RuK 4. 0 0.26 0.33 65.   . 

3,1,12 RuSrK 1.90 0.43 0.88 149.6 4.1

2,2,12 RuSrK 0.90 0.81 1.38 153.  2.4

1,3,12 RuSrK 0. 5 1.10 1. 8 156.4 1.6

3,1,12 RuFeK 0. 6 0.35 0.9 248.1 3.0

2,2,12 RuFeK 0.10 0.03 0.41 226.6 2.9

1,3,12 RuFeK 1.20 0.00 0.28 250.9  .6

Table 4.2. H2 uptake, turnover frequency (TOF) and apparent activation energies (Ea) 

for Sr and Fe containing catalysts compared to 4 Ru and 4,12 RuK catalysts where the 

H2 uptake for each catalyst was calculated from H2 chemisorption experiments 

assuming a 1:1 ratio. 
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Next, the ammonia decomposition activity of these Sr and Fe based catalyst was 

further tested in higher concentrations of ammonia, in order to determine the accuracy of 

fails and hits in the high throughput experimentation and also to determine how good these 

catalysts may be in more realistic conditions for H2 generation from ammonia 

decomposition. The activity of the Sr and Fe containing catalysts under higher 

concentrations of ammonia in a plug flow reactor set up. The results are shown in Figure 

4.. The catalysts were tested from 250°C to 400°C in increments of 50°C. The reactions 

were run under 100% NH3 at a space velocity of 5,400 mL/hr/gcat and at atmospheric 

pressure. It has been reported that there is a negative dependence on the partial pressure of 

ammonia on the rate of reaction (84). Therefore, in general we expect to see a decrease in 

the conversion as the inlet concentration of ammonia is increased. So, upon increasing the 

concentration from 1% NH3 in the high throughput screen to 100% NH3, all catalysts shown 

a decrease in conversion. The Sr based catalysts exhibited similar performance to each 

other under these conditions, while the 3,1,12 RuFeK catalyst showed much better 

Figure 4.15. Ammonia decomposition activity of (a) 3,1,12 RuSrK (black squares) 

2,2,12 RuSrK (red circles) and 1,3,12 RuSrK (blue triangles) and (b) 3,1,12 RuFeK 

(black squares) 2,2,12 RuFeK (red circles) and 1,3,12 RuFeK (blue triangles). Reaction 

conditions: 100% NH3, 5,400 mL/hr/gcat and atmospheric pressure. 
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performance than the 2,2,12 RuFeK or the 1,3,12 RuFeK catalysts. Additionally, all six 

catalysts showed a marked decline in activity at the lower temperatures of 250°C and 

300°C. However, we see similar trends compared to what was exhibited in the high 

throughput screening, where Sr based catalysts showed excellent activity at lower 

temperatures (≤ 400°C).  

4.6.1 CO Adsorption over Ru based Catalysts 

The adsorption configuration of CO onto a metal surface can provide insight into 

the strength of the bond between the metal and CO. Different metal sites will adsorb CO 

in various configurations, so CO adsorption can also provide insight into active sites that 

may be present in some catalysts and not others. CO adsorption was investigated through 

FTIR spectroscopy. The adsorption of CO at room temperature for 4 Ru, 4,12 RuK, 1,3,12 

RuSrK and 1,3,12 RuFeK are given in Figure 4.16. The 1,3,12 RuSrK and 1,3,12 RuFeK 

were chosen to determine if there were different active sites present in the 1,3,12 RuSrK 

which exhibited high conversion and TOF, in contrast to the 1,3,12 RuFeK catalyst.  

The baseline 4 Ru (black trace) catalyst exhibits three primary features: a weak 

band at 2135 cm-1, a strong band at 2078 cm-1 and another weak band at 2015 cm-1. Studies 

of CO adsorption on Ru often report a weak band at 2135 cm-1 in conjunction with a band 

at 2078 cm-1, which is ascribed to the vibration of multicarbonyl surface species (314–316). 

The 2015 cm-1 exhibited in the 4 Ru catalyst has been attributed to the vibration of 

dicarbonyl species, as well as the adsorption of CO on low coordinated Ru or high energy 

defect sites (316). These bands are suppressed with the addition of K, which has been 

previously observed by other groups (169, 317). In contrast, with the addition of K, the 
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4,12 RuK catalyst (blue trace) exhibits bands at 2165 cm-1, 2033 cm-1 and a broad feature 

from 1995 cm-1 to 1850 cm-1.  This broad feature is also present in the 1,3,12 RuSrK and 

1,3,12 RuFeK catalyst, albeit the peak maxima shift slightly in each spectra. Alkali addition 

to metal catalysts have been known to largely affect the interactions of CO in the low 

frequency range. This is due to the interactions of CO with an electropositive center, this 

weakening the bond between C and O, and making it more reactive. For example, the 

adsorption of CO on K pre-covered Ru (0001) crystals have been shown to be a function 

of the CO and K coverage, and that K addition can shift the CO stretching frequency by as 

much as 600 cm-1 (materials 73-75). Other studies have reported that with the addition of 

K, bands become broader and more asymmetrical with bands located at 1995 cm-1, 1950 

cm-1 and 1940 cm-1 (169, 317). The suppression of these bands with K has been 

hypothesized to be a consequence of blocking low coordinated Ru sites, which in turn 

suppresses hydrogen adsorption (317). With the addition of K, we do indeed see a decrease 

in the H2 uptake at constant Ru loading during H2 chemisorption experiments (Table 4.). 

For the 4,12 RuK catalyst, the band located at 2033 cm-1 may be attributed to linearly 

adsorbed CO. The position of this band has been shown to be a function of CO coverage 

over the metal surface (169, 314–318), due to dipole-dipole interactions between 

neighboring CO molecules. This peak is not present in the 1,3,12 RuFeK catalyst, but is in 

the 1,3,12 RuSrK spectra. The addition of Fe may act to suppress the adsorption of CO on 

Ru, as this has been previously reported for Rh/SiO2 catalysts when Fe was added to the 

catalyst (319, 320). Furthermore, the 1,3,12 RuSrK catalyst shows maxima located at 1950 

cm-1 and 1894 cm-1, while the 1,3,12 RuFeK catalyst has maxima located at 1976 cm-1, 

1925 cm-1 and 1903 cm-1. Additionally, both catalysts in addition to the 4,12 RuK catalyst 
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exhibit a broad, intense shoulder at 1790 cm-1 which may be attributed to bridge bonded 

CO (181, 316). This stretch is not observed in the 4 Ru catalyst and has previously been 

reported in K promoted Ru systems using 3% K (materials 68, 76). Single crystal studies 

have investigated bridge bonded CO on alkali promoted Pt (111) and Rh (111) surfaces 

and have found that the amount of bridge bonded CO increases with alkali coverage (321, 

322). Therefore, we may see a dramatic increase in intensity of this band as the alkali 

loading is much higher here than reported elsewhere. Ultimately, the electropositive nature 

of Sr may act to weaken the CO bond through further charge transfer resulting in a larger 

Figure 4.16. FTIR spectra of CO adsorbed on (a) 4 Ru (b) 4,12 RuK (c) 1,3,12 RuSrK and 

(d) 1,3,12 RuFeK. 
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relative intensity of bridge bonded CO especially with the lower Ru content, with respect 

to the 4,12 RuK catalyst.   

4.7 Conclusions 

In this chapter we explored various catalysts geared towards lowering the loading 

of Ru content compared to a 4% Ru catalyst for ammonia decomposition at low 

temperatures. The baseline catalyst used for comparison was a previously optimized 

catalyst containing 4% Ru and 12% K supported on γ-Al2O3. Substitution of Ru was first 

carried out by using various transition and precious metal catalysts, however no 

combination of Ru with a second metal was able to perform better than a catalyst containing 

4% Ru. This is because of the high intrinsic activity exhibited by Ru for this activity, as it 

is able to bind N2 neither too strongly or too weakly and thus most easily facilitates the rate 

determining step for ammonia decomposition. Next, high throughput experimentation was 

used to explore an even wider parameter space for low Ru content ammonia decomposition 

catalysts by variously not only the secondar metal but also the composition of Ru and the 

secondary metal in combination with K. Catalysts contained the compositional loadings of 

either 1,3,12 RuMK, 2,2,12 RuMK or 3,1,12 RuMK, where M = Na, K, Mg, Ca, Sr, Sc, Y, 

Zr, Hf, Ta, Nb, Cr, Mo, W, Mn, Re, Fe, Os, Co, Rh, Ir, Ni< Pd, Pt, Cu, Ag, Au , Zn, Cd, 

In, Sn, Pb or Bi. This resulted in over 100 catalyst formulations, many of which have not 

previously been explored for ammonia decomposition. In order to quickly and accurately 

test this large number of catalysts, a 16-channel parallel plug flow reactor system was used 

for screening of ammonia decomposition catalysts in 1% NH3/Ar from 250°C to 450°C. 

Quantification of each of the 16 reactors was performed in parallel by using spatially 

resolved FT-IR. A focal plane array based detector was used in order to gain the spatial 
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resolution needed to quantify in parallel. The catalysts were compared to the activity of a 

4,12 RuK catalyst under identical operating conditions, and catalysts that performed better 

than this baseline with less Ru were considered to be successful hits in the screen. These 

catalysts included many different substituted elements including Mg, Ca, Sr, Sc, Zr, Hf, 

Ta, Rh and Ir. With only 1% Ru, Sr, Y, Zr and Hf substitution were able to dramatically 

outperform the 4,12 RuK catalyst at 300°C with only 75% of the Ru content.  

The comprehensive catalyst data set synthesized here was further investigated 

through XRD analysis, where XRD patterns for each of the 100 catalysts were collected 

and analyzed through profile fitting and crystal identification. While there was no 

correlation found between crystal phase present and ammonia decomposition activity, we 

found a general trend within average crystallite size, secondary element substation and 

ammonia decomposition activity. At 300°C, catalysts containing smaller average Ru 

crystallite sizes in conjunction with smaller atomic number secondary elements exhibited 

higher ammonia decomposition reactivity. This trend became more evident at each 

compositional loading, where the most active catalysts of the 1,3,12 RuMK catalysts had 

the smallest average particle size and the small atomic number of the secondary element.  

However, due to the vast number of other variables present here that may be 

influencing activity, a random forest machine learning algorithm was developed to 

determine which features of the catalysts most heavily influenced the activity. The 

algorithm showed much promise in predicting catalytic activity by using only few catalysts 

as a training set. From this, we were able to determine that many electronic features were 

the most important in influencing the activity from catalyst to catalyst. These include 

number of d-shell valence electrons, electronegativity, covalent radius and work function. 
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Ultimately, we have shown that high throughput experimentation with an expertly chosen 

design space in combination with machine learning, can ultimately reduce the cost and time 

necessary for material discovery.  

To better understand why some of these catalysts performed better than others, 

further investigation into Sr and Fe based catalysts was conducted by determining the 

apparent activation energy, measuring the TOF, H2 uptake, and probing the kind of Ru 

active sites present through CO adsorption. With the 1,3,12 RuSrK catalyst, the TOF was 

increased to 1.78 s-1, compared to 0.88 s-1 exhibited by the baseline 4,12 RuK catalyst. 

Additionally, the apparent activation energy was increased from 65.7 kJ/mol for 4,12 RuK 

to 149.7 kJ/mol for the 3,1,12 RuSrK catalyst. The apparent activation energy further 

increased with increasing Sr loading to 156.4 kJ/mol. With increasing TOF and increasing 

apparent activation energy, this suggests that Sr acts to electronically modify the exposed 

Ru active sites and may possibly result in a change in the rate determining step over Ru 

based on rate determining steps calculated through microkinetic modeling. By probing the 

metal surfaces with CO adsorption, we determined that the Sr based catalysts weakened 

the CO bonds on Ru sites, and also increased the relative intensity of strongly adsorbed 

linear CO. This may be analogous to the weakening of the N-H bonds of adsorbed ammonia 

and thus more easily facilitating the dehydrogenation steps.  
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CHAPTER 5 

CONCLUSIONS & OUTLOOK 

This body of work explored the discovery of ammonia decomposition catalysts 

using high throughput experimentation, as well understanding the use of hollandite as an 

ammonia decomposition catalyst. Ammonia decomposition is a viable solution to 

hydrogen storage and transportation, due to its high energy density, ease of transportation, 

and liquification at 8 bar and 298K. Currently, the issues with ammonia decomposition are 

that the cost of the Ru based catalyst are much too high for the large-scale manufacturing 

of the catalyst to be realistic. Additionally, these catalysts need to be able to reach near 

complete conversion at low temperatures, at or below 450°C, in order for this technology 

to be pair with PEMFC, which can utilize the liberated hydrogen as a source of energy. 

Ammonia decomposition occurs through sequential dehydrogenation steps, followed by 

the recombination and desorption of molecular hydrogen and nitrogen. Typically, the rate 

limiting step for this reaction is the recombination and desorption of molecular nitrogen. 

However, catalysts also suffer from hydrogen poisoning at higher rates of reactions when 

more hydrogen is generated from the decomposition of ammonia. The current body of 

literature has explored optimization of Ru based catalysts, but typically these loadings are 

in excess of 5% or more or require complex synthesis methods such as making carbon 

nanotubes for supports. Other transition metals for this reaction include Fe, Co, and Ni, 



www.manaraa.com

160 

however, these metals are intrinsically less active than Ru and exhibit poor performance at 

the temperatures of interest.  

In most cases, complete conversion is not met until roughly 600°C. Ultimately, 

current catalysts are severely kinetically limited in the lower temperature range for this 

simple reaction. There has been little work involving the discovery of multi component 

catalysts for low temperature ammonia decomposition, and this fact is what motivated this 

body of work presented here.  

Previous work from our group used response surface methodology to optimize the 

promoter and promoter loading for a 4% Ru catalyst. Through this study, they determined 

that 4% Ru 12%K catalyst was the most active for low temperature ammonia 

decomposition, and found that structurally, the catalyst consisted of KRu4O8 hollandite as 

the Ru structure. The body of work presented here was aimed at understanding under what 

conditions this structure could be form through impregnation techniques, as prior synthesis 

methods for this structure involve solid state reactions, flux methods and hydrothermal 

treatments. In Chapter 3, we investigated multiple variables involving the synthesis of 

hollandite, as well as determined what the working state of the 4% Ru 12% K catalyst was 

before ammonia decomposition reactions and began to unravel the reduction mechanism 

of the hollandite structure. First, we investigated three different impregnation methods, dry 

impregnation, incipiently wet impregnation, and strong electrostatic adsorption. We 

determined that both dry and incipiently wet impregnation was able to form the hollandite 

structure. The SEA method instead produced highly dispersed K on the alumina support, 

with very small RuO2 nanoparticles. Additionally, we were able to determine that most of 

the K used in the 4,12 RuK catalyst chemically modifies the alumina support by interaction 
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with the surface hydroxyl groups. This creates a KAl(OH)2CO3 compound that is known 

to enhance the basicity of the support. We found that the addition of K to the Ru based 

catalyst also lowers the apparent activation energy from 125.2 kJ/mol to 65.7 kJ/mol/. This 

is most likely due to the electronic enhancement of the Ru active sites by electron donation 

from K.  

Next, we investigated whether or not which metal precursors were chosen for the 

incipient wetness impregnation synthesis had any effect of hollandite formation. This 

involved two different Ru precursors and three different K precursors. This study 

determined that hollandite is able to be formed with the use of RuCl3 in combination with 

KCH3COO and KOH, and not with Ru(acac)3 in combination with either KCH3COO, KOH 

or KNO3. Next, we look at dilution volume use during the incipient wetness impregnation 

method on the relative abundance of hollandite and KRuO4 formation on the 4,12 RuK 

catalyst. The impregnation solution varied from 5 mL to 20 mL, which correlates to 4 

impregnations up to 17 impregnations. We were able to determine that with lower solution 

volumes, the ratio of hollandite to KRu4O8 was larger through the basis of XRD analysis 

and decreased with increasing solution volume. We tested these catalysts for their ammonia 

decomposition activity and an optimal dilution volume of 6 mL was determined to have 

the highest activity at 300°C. Next, we looked at the effect of impregnation order on the 

formation of hollandite. This provided insight into how the hollandite is formed, whether 

or not Ru and K require intimate mixing to form some sort of layered precursor structure 

to the hollandite or whether they grow epitaxially. The impregnation was changed from 

co-impregnation of Ru and K to sequential impregnation of Ru followed by K, and then K 

followed by Ru. These catalysts showed that when Ru was impregnated onto the catalyst 
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first, we could forego the formation of KCl. Additionally, when Ru is impregnated first, 

hollandite was formed on the catalyst, but this was not the case when K was first 

impregnated. This suggests that Ru acts as nucleation sites for the formation of hollandite.  

Next, we looked at variables concerning the wet impregnation synthesis, 

specifically the duration of the calcine treatment and also the temperature at which the 

solution is evaporated during the wet impregnation and whether or not these variables had 

any effect on the formation of hollandite for the 4,12 RuK catalyst. Specifically, we looked 

at evaporation temperatures of 60°C, 90°C, 120°C and 150°C and calcine durations of 1 

hr, 3 hr and 5 hr. We determined that at lowering evaporation temperatures of 60°C and 

90°C, the hollandite structure was able to be formed after calcining at 550°C for either 1, 

3 or 5 hr, but at higher temperatures, the hollandite could not form regardless of the calcine 

temperature. The primary structure present instead of KRuO4. When these catalysts were 

tested for ammonia decomposition, we found that an evaporation temperature of 90°C and 

a calcine duration of 1 hr resulted in the highest activity at 300°C in 10% NH3/Ar and at a 

space velocity of 30,000 mL/hr/gcat. Lastly we looked at the effect of lowering the K 

loading on ammonia decomposition activity, as the original study did not investigate 

loadings below 12%, but looked at loadings up to 36%. Here, we synthesized 4% Ru 

catalysts with various K loadings from 0.5% to 15%, as well as 1% Ru catalysts with 

various K loadings from 0.5% to 15%. Interestingly, both the 1% Ru and 4% Ru had an 

optimal K loading of 12%. This is most likely due to the fact that K is utilized in the catalyst 

in multiple ways, and not simply deposited in close proximity to Ru to enhance activity. In 

addition to electronic enhancement, K also chemically modifies the surface of the alumina 

has previously mentioned, and also acts to alleviate poisoning from Cl anions leftover from 
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the synthesis, by forming bulk KCl on the catalyst. Based on theoretical calculations of the 

uptake of K+ on γ-Al2O3, the maximum uptake of K+ on our support would be 3.56 mmol 

of K+
. In addition, if all the Cl- interact to form KCl, that would account for an additional 

2.37 mmol of K+
. These two uses of K would account for roughly 97% utilization of the 

K+
. 

In Chapter 3, the working state of the catalyst was also investigated. Mainly, we 

wanted to determine whether or not the KRu4O8 hollandite structure was the active site 

during the ammonia decomposition reaction or not. To determine this, the 4,12 RuK 

catalyst after H2 reduction was studied using SEM, TEM and EDX. From SEM analysis, 

the nanorod structures clearly underwent some degradation to form worm like structures 

on the surface of the catalyst, which were further degraded after exposure to ammonia. 

Elemental mapping confirmed that these worm-like structures were composed of Ru and 

Cl, with K being highly dispersed about the surface of the support. TEM imaging showed 

a clearer image of these rods in their fresh, reduced and spent state and measuring the 

diameter of the rods determined that they shrink from an average diameter of 27.5 nm to 

23 nm after reduction. The size does not further decrease after exposure to ammonia. XRD 

analysis showed that the rods are composed of metallic Ru after reduction, and therefore 

we can safely confirm that they completely decompose before the ammonia decomposition 

reaction. H2-TPR was further used to reducibility of the hollandite structure compared to 

4% Ru catalyst. While the 4% Ru catalyst showed typicaly reduction peaks for RuO2 as 

well as uncalcined RuCl3 between the range of 100 – 200 °C, the 4% Ru, 12%K catalyst 

had two major, broad reduction events. The low temperature event occurred between 75°C 

and 200°C with maxima located at 120°C, 144°C and 156°C, and an even larger high 
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temperature event between 275°C and 500°C, with a maximum at 345°C. The reduction of 

hollandite and the secondary phase formed during synthesis KRuO4, is not known.  

Therefore, we further probed the reducibility of the catalyst through in-situ XRD 

measurements to corroborate the reduction events with the disappearance of the major 

XRD reflections of the two Ru species. Interestingly, we found that both the KRuO4 and 

hollandite structure reduce by 150°C, and that metallic Ru did not appear until roughly 

200°C, indicating that some sort of intermediary phase occurs before the hollandite reduces 

to metallic Ru. Alternatively, the crystallite size of the Ru particles could have been too 

small to be seen with XRD. Regardless, this gave us inside into the reduction temperature 

of the catalyst, and that all of the metal oxides species reduce by 150°C. Additionally we 

saw that the crystallite size of metallic Ru increases with increasing temperature all the 

way up to our typical reduction temperature of 450°C. The particle size increased from 7.4 

nm to 16.2 nm. The morphology of catalysts reduced at 250°C, 350°C and 450°C was 

analyzed using SEM. We found that the metallic Ru nanosegments became much more 

stalky with increasing reduction temperature. Additionally, the effect of reduction 

temperature of the ammonia decomposition reactivity of the catalyst was measured. 

Catalysts reduced at 250°C and 350°C showed the same activity, even with differences in 

morphology and crystallite size. The catalyst when reduced at 450°C, showed dramatically 

higher activity than the other two reduction temperatures. This may be due to the fact that 

this catalyst had a higher fraction of B5 ensembles.  

In Chapter 4, high throughput experimentation was used in order to find new low 

temperature ammonia decomposition catalysts that contained less Ru than the previously 

discussed catalyst containing 4% Ru and 12%K supported on γ-Al2O3. Ultimately the goal 
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here was to produce a catalyst with dramatically lowered Ru content, that also exhibited 

high ammonia decomposition reactivity at low temperatures. High throughput 

experimentation gives us the unique ability to test multiple catalysts in parallel, in order to 

save on the cost of experimentation as well as time. This gives us the ability to test more 

exotic and unique catalyst combinations than a typical single reactor plug flow reactor 

would give. When high throughput experimentation is paired with machine learning 

algorithms, one has the capability to dramatically reduce the amount of time and 

experimentation required for new material discovery. Currently, most literature has only 

been able to interpolate within specific ranges of compositions for catalyst discovery or 

require complex density functional theory calculations or compiled literature data as a 

training data set. Very few studies have the capabilities to generate the large amount of 

data required for machine learning algorithms. Firstly, we attempted to find low Ru content 

catalysts by adding secondary transition metals to 2% Ru. These included Co, Ni, Fe, Mn, 

Zn Mo, Hf, Y and the precious metals Os, Rh, Pt, and Ir. In all cases, the addition of 2% of 

these transition metals to a 2% Ru catalyst resulted in poorer activity than a 4% Ru catalyst 

under identical conditions. This was not surprising, as similar results have been achieved 

in the literature.  

Therefore, a different approach was taken to new catalyst discovery. The previously 

optimized catalyst containing 4% Ru and 12% K was used as a baseline and further 

modified in two ways. Firstly, a secondary metal was introduced into the catalyst, of which 

spanned the entire periodic table. Secondly, the total metal weight loading was held 

constant at 4%, and varied such that either 1, 2 or 3% of Ru was replaced with one of the 

secondary metals. These metals included Ca, Sr, Sc, Y, Zr, Hf, Nb, Ta, Cr, W, Mn, Re, Fe, 
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Os, Co, Rh, Ir, Ni, Pd, Pt, Cu Ag, Au Zn, Cd, In, Sn, Pb or Bi, which are denoted by the 

letter “M”. The weight loadings were then either composed of 3%Ru, 1%M, 12%K (3,1,12 

RuMK), 2%Ru, 2%M, 12%K (2,2,12 RuMK) or 1%Ru, 3%M, 12%K (1,3,12 RuMK) and 

supported on γ-Al2O3. These catalysts were tested for low temperature ammonia 

decomposition using a 16-channel parallel plug flow reactor and spatially resolved FTIR 

for quantification of all 16 reactions in parallel.  

The catalysts were then compared to the baseline 4,12 RuK catalyst tested from 

250°C to 450°C under 1 %NH3/Ar at a space velocity of 30,000 mL/hr/gcat. Successful 

“hits” were determined at 300°C that, which is an extremely mild ammonia decomposition 

temperature and also produced the widest variety of responses from the 99 catalysts 

studied. The successful catalysts were those that showed a higher activity than the baseline 

catalyst at these conditions. From this study we found that substitution of Ru with Mg, Ca, 

Sr, Sc, Y, Zr, Hf, Ta, Rh and Ir with less Ru. It is obvious that this approach was much 

more successful than studying simply bi-metal catalyst systems. With as little as 1% Ru, 

substitution with Sr, Zr, Y and Hf resulted in a much more active catalyst than the 4,12 

RuK baseline. In order to better understand the relationship between catalyst composition, 

present metal oxides and activity, XRD patterns were taken for each catalyst in the data 

set. To this end, compositional analysis as well as peak fitting to determine the crystallite 

size of each crystalline Ru component was performed to determine the average crystallite 

size for each catalyst. The activity of each of the three weight loadings as a function of the 

average particle size, secondary metal atomic number and ammonia decomposition activity 

were then compared. With compositions of 3,1,12 RuMK we found that catalysts with 

smaller particle sizes had higher activity, but that the atomic number of the secondary metal 
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was not much a factor. As the compositional loading decreased from 2,2,12 RuMK to 

1,3,12 RuMK, the atomic number of the secondary element became a larger factor in 

determining trends in the ammonia decomposition activity at 300°C. The catalysts with the 

highest activity exhibited the smallest average Ru particle size and the smallest atomic 

number of the secondary element. However, we found no discernible trends in Ru metal 

oxides and secondary oxides present and ammonia decomposition activity. This may be 

due to the strong interplay present between the composition, secondary metal and average 

particle size in addition to a variety of other factors that makes elucidating trends not as 

straight forward. 

For these reasons, we introduced a framework combining high throughput 

experimentation with machine learning algorithms using the experimental data collected 

here. The purpose of this algorithm was to show that we can use small sets of data 

(hundreds of points) to make predictions on catalyst activity and also to determine which 

features of the catalyst are the most important in determining activity. These features 

include structural, geometric and general chemical data describing metals. Additionally, 

we added features that pertained to the synthesis parameters and operating conditions for 

each catalyst such as moles of chlorine present, space velocity and ammonia concentration. 

A random forest machine learning algorithm was developed for this purpose, and 

ultimately, we determined that the most important features describing ammonia 

decomposition activity across this range of catalysts was temperature, number of d-shell 

valence electrons, electronegativity, covalent radius, work function and number of valence 

electrons. While it was obvious that temperature is the most influential variable in 
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determining activity, this serves as a confirmation that the algorithm can indeed accurately 

choose variables that influence activity.  

Chapter 4 also provided further insight into two catalysts from the high throughput 

screen, mainly one good performing set of catalysts containing Sr, and a poor performing 

set of catalysts containing Fe. This served as a confirmation that the high throughput was 

a good screening tool to find catalysts that can operate under more realistic conditions, and 

also to under why one catalyst performed well while the other on did not. Firstly, the 

apparent activation energy for each of the 3,1,12 RuSrK, 2,2,12 RuSrK, 1,3,12 RuSrK, 

3,1,12 RuFeK, 2,2,12 RuFeK and 1,3,12 RuFeK catalysts was determined in 100% NH3 at 

a space velocity of 5,400 ml/hr/gcat and under differential conditions. These values were 

then compared to the 4 Ru and 4,12 RuK baseline catalyst. We found that the addition of 

Sr increased the apparent activation energy from 65.7 kJ/mol (4,12 RuK) to 149.6 kJ/mol 

for the 3,1,12 RuSrK catalyst. The apparent activation energy continued to slightly increase 

with increasing Sr loading up to 156.4 kJ/mol. The Fe containing catalysts exhibited a 

much higher apparent activation energy between the range of 226.6 kJ/mol and 250.1 

kJ/mol. The TOF for each catalyst was also determined under the same conditions. The 

1,3,12 RuSrK catalyst had the highest TOF of 1.78 s-1, over twice as active as the 4,12 RuK 

catalyst with a TOF of 0.88 s-1. Ultimately, we determined that the substitution of Fe with 

Ru replaced the active Ru sites with intrinsically less active Fe sites, while Sr instead 

seemed to electronically modify the Ru active sites on the basis of the increasing TOF with 

increasing Sr loading and the H2 uptake as determined through H2 chemisorption 

experiments. Comparing the activation energy needed for various steps in the ammonia 

decomposition reaction, it seems that the addition of Sr may act to change the rate limiting 
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step from the recombination and desorption of N2 to some combination of the 

dehydrogenation of NHx species. CO adsorption was performed on 4 Ru, 4,12 RuK, 1,3,12 

RuFeK and 1,3,12 RuSrK to further confirm whether Sr modifies or produces different 

sites on the Ru catalysts based on the different adsorption configurations of CO on Ru. We 

determined that the addition of Sr produced relatively more linearly adsorbed CO and acted 

to weaken the CO triple bond on Ru sites, which analogously which could facilitate the 

dehydrogenation steps during ammonia decomposition.  

Ultimately this work has shown that high throughput experimentation gives us a 

unique ability to generate massive, multidimensional datasets that are not typical for 

heterogeneous catalysis. Here, we demonstrated the synthesis and catalytic screening of 

over 100 different Ru based bimetallic catalysts for low temperature ammonia 

decomposition. The aim of this study was to discovery novel elements and catalyst 

formulations that could result in a less expensive and highly active ammonia 

decomposition catalyst at temperatures below 450°C. We showed that high throughput 

experimentation can be a powerful for new catalyst discovery when an appropriate design 

space is chosen based on domain knowledge for the reaction in hand. Additionally, when 

combined with machine learning, the efficiency of screening and catalyst discovery can 

maximize further.   
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